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Comment :  STOP!   
 Nearly everyone in this class has met the goal of developing a familiarity with programming, which 
I’m quite happy about, and has done well on the programming assignments.  (Wondering if you’re in this 
category?  If you’re not doing well, you’ve recently received a cautionary email from me.)  This is the last 
programming assignment, and though it’s not terribly difficult, it’s certainly not simple.  For many of you, 
your time will be better spent working on the coupled oscillator project, working on homework, and 
studying the midterm and older assignments in preparation for the final.  I encourage you to read this 
assignment, since you might find it interesting, but please don’t feel compelled to do the exercises.  Mull it 
over during the Winter break.  Really.  If you want to hand it in, note the due date above. 
 
 
1  Chaos (Motivation) 
 
 Throughout our course we’ve been able to analyze various physical systems and derive fairly simple 
equations of motion that describe them.  These include, for example, the motion of a pendulum, swinging 
back and forth.  If we start with some initial conditions, we know the motion of the pendulum for all 
subsequent times.  If we very slightly change the initial conditions, the motion slightly changes, since the 
amplitude and phase of our solution change a little bit.  Right? 
 For centuries this was assumed to be the case, until it was discovered that equations of motion only 
slightly more complicated than those of a simple harmonic oscillator are really not so simple – in many cases 
they can exhibit behavior that depends extremely sensitively on initial conditions, and that moreover seems to 
have no discernible periodicity.  This is termed chaos, or deterministic chaos.  (“Deterministic” means that 
the motion at some time is specified by what preceded it – i.e. it’s not random.)  A few people about 100 
years ago, most notably Henri Poincaré, began to realize the existence and consequences of chaos.  With the 
advent of computers in the 1960’s and 1970’s, though, our understanding of chaos bloomed.  Now we realize 
that there are many “simple” systems that, though deterministic, are completely unpredictable, impacting not 
only fields as diverse as physics, weather prediction, and economics, but our basic outlook on nature. 
 There are many books on chaos and “non-linear dynamics.”  One excellent place to start is a non-
technical (i.e. “popular”) book, James Gleick’s Chaos: Making a New Science (1988). 
 In this assignment, we’ll briefly look at a few manifestations of chaos. 
 
 
1  Population dynamics and the logistic map 
 
 The mathematical modeling of biological populations – animals in the wild, bacteria infecting a 
populace, etc. – is an important tool for understanding ecology.  Surprisingly, even very simple models of 
population dynamics can lead to very surprising conclusions:  



 
 



 
 
(From The Curious Incident of the Dog in the Night-Time, a very good novel in which an autistic boy investigates 
the murder of a neighbor’s dog). 
 
 Let’s examine the phenomenon described above.  Consider a simple population model, in which a 
population can grow, but due to environmental constraints (e.g. a finite supply of land or food) it has a finite 
“capacity” it cannot exceed.  Define nx  as the population in generation n as a fraction of the maximum 
population.  (So that x  must be between 0 and 1.)  We assume that:   
 (1) The population of generation n+1 is proportional to nx  (which makes sense), and  

 (2) The population of generation n+1 is proportional to 1 nx− , i.e. the population grows faster the 
farther it is from the maximum capacity. 
Combining these: ( )1 1n n nr xx x+ = − , where r  is some parameter.  (This is known as the “logistic map.”) 
 
 
(Exercise P11, 6 pts.) 
(a, 1 pt.)  Write a simple MATLAB program that implements the logistic map for n=1 to 40 (i.e. 40 

generations) and r =2.7.   Run it three times for three different values of 1x  -- use the last three digits of 
your UO ID number, each divided by 10.  (I.e. if your ID ends in ...145, try 0.1, 0.4, and 0.5).  (If any digit 
is 0, pretend it’s 1.)  Plot all of the resulting ( )x n  graphs together.  You should find that they all rapidly 
converge to the same value.  Hand in your plot. 

 



(b, 1 pt.)    Inspired by the convergence of (a), determine by applying simple algebra to the logistic map 
equation (i.e. without any programming) the value to which x  converges, as a function of r .  (Hint:  You 
should find that for r =2.7, x∞ =0.6296...) 

(c, 1 pt.)  Run your program of part (a), but for r = 3.75 and 1x  = 0.1 d , 0.1001 d , 0.0999 d , where d is 
the last digit of your UO ID number (or 1 if that’s 0).  Hand in your plot of each of these three ( )x n . 

(d, 3 pts.)  Hopefully, your plot of (c) looks different than the plot of (a) – not only is there no convergence, 
but very similar values of 1x  lead to very different nx  later on.  Perhaps the logistic map is not as simple 

as it seems!  Suppose we ran the logistic map for 1000 generations, from some initial value 1x  = 0.1 d , 
as above.  Suppose we considered the last 300 values of x  (i.e. generations 701 to 1000).  For the setup 
of part (a) we’d think that these all have the same value, while from part (c) we’d suspect that they won’t, 
and that x  is meandering over a wide range.  Write a program to calculate and plot, as a function of 
r  from r =2.7 to r =4.0 in steps of 0.005, all the last 300 values of x that occur at that r .  Here’s a 
piece of what your answer should look like (i.e. a “zoomed in” view of part of the plot.)  (I recommend 
drawing points rather than e.g. circles, since there are lots of data to plot: “plot(... ‘k.’)”; 

 
Figure 1.  x(701:1000) versus r for the logistic map. 

 
 This is known as a “bifurcation diagram.”  You should see that some values of r lead to a single 
“stable” population.  Others lead to two – the population oscillates between these.  Others lead to three, and 
so on. Others lead to an infinite number – the population is “chaotic,” a term we have not really defined, but 
whose characteristics are becoming clearer.  Interestingly, there are “islands of stability” – ranges of r  that 
are surrounded by chaotic regions, but are not themselves chaotic.  Can you find one? 
 Hand in your plot and your program. 
 Suggestion:  You’ll probably find it easiest to loop through all the r values in a “for” loop.  For each 
r , determine the x  values you want to plot, and plot them – display all of these values in the same figure, 
being sure to avoid overwriting the previous plot by enabling “hold on.”  You’ll need to plot many x  values 
for a single r  value; one way is to make an array of “duplicate” r  values.  For example:  “ r *ones(1,4)” 
creates a 1x4 array that is [r r r r].  
 
 
 



2  Chaos in driven pendulums 
 
 In class we examined the motion of a forced, damped harmonic oscillator, with the equation of 
motion 2

0 sin( )x x x F tω γ ω= − − + , where ω  is the driving frequency, 0ω is the natural frequency, γ is the 

driving factor, and F is the amplitude of the driving force in some natural units (e.g. force divided by the 
mass of the oscillator).  This describes the forcing of a mass on a spring, or a LCR circuit, or a swaying 
pendulum.  Surprisingly, chaos arises when we make very slight modifications to this system, for example, 
getting rid of the small angle approximation for the pendulum, for which: 
 

2
0 )sin( sin( )F tθ ω θ γθ ω= − − +  

where θ  indicates the angle and 0FF
ml

= .  (If this isn’t clear, derive it – recall that the version without 

forcing came up in an earlier programming assignment.)  How can we examine this system?  By using what 
we’ve learned about calculating numerical solutions to differential equations! 
 

(Exercise P12, 11 pts.)  Apply the Runge-Kutta algorithm to numerically solve the above differential 
equation of motion for the driven pendulum.  Use the parameters  0 1ω =  (rad/sec), 0.5γ =  (N s / m 

kg), and 00.7ω ω= .  Use whatever initial conditions you like, e.g. (0) 0θ =  and (0) 1.0θ = −  

radians/sec.  Calculate ( )tθ  and ( )tθ  for a time interval corresponding to a few thousand T, where T is 

the period of the driving.  Run your program for F = 0.4, 0.6, 0.8, 1.0, and 1.2 (N kg / m).   Hand in 
your program and various plots: 

(a, 4 pts.)  Plot the angular velocity θ  for a time interval corresponding to 20 T, starting at some time t long 

after the transient response of the oscillator has died away.  You should have one plot per F value. 
(b, 5 pts.)  Plot together ( )tθ  as above for two situations in which the initial conditions differ only slightly 

(e.g. by 0.1%).  Do the same for the “usual” pendulum, in which we make the small θ  approximation.  
(You’ll have to modify your program, but in an easy way.)  Turn in all your plots, and briefly comment on 
them. 

(c, 2 pts.)  Plot the phase space diagram, i.e. θ  vs. θ , starting at a time after which transient behavior has 
decayed.  (Optional:  In case you’d like to investigate a clearer way to plot complicated phase space 
diagrams, look up “Poincaré sections,” and hand these in instead.)  Turn in your plots, and briefly 
comment on them. 

 
Comments / hints: 

• If you don’t see any difference for the various F , you’ve probably done something wrong.  However, 

try “playing with” different F values anyway, and see if you can find non-chaotic and chaotic regimes. 
• You might need to “speed up” your programs.  One simple thing to do is avoid having arrays that grow 

in size, since the memory allocated to them constantly has to be re-sized.  If you’re working with an 
array “x” that is being constructed by a loop and that eventually will be a matrix with N elements, then 
first, before the loop, define “x = zeros(1,N)”, for example, which makes x a 1×N array of zeros. 

• Recall especially for (c) that θ  is an angle, so only its value “mod 2π” is meaningful.  MATLAB’s 
“mod” command may be useful.   

• If you want to put multiple plots in one figure, look up the “subplot” command. 


