Prof. Raghuveer Parthasarathy
University of Oregon; Fall 2007
Physics 351 - Vibrations and Waves
Problem Set 1: SOLUIIONS
H.a.\$. the motion equation is

$$
m \ddot{x}=-k x \quad \omega=\sqrt{k / m}
$$

that is $\ddot{x}+\omega^{2} x=0$
if $x=A \sin \omega t+B \cos \omega t$.
then $\dot{x}=A \omega \cos \omega t-B \omega \sin \omega t$.

$$
\begin{aligned}
\text { so } \quad \ddot{x} & =-A \omega^{2} \sin \omega t-B \omega^{2} \cos \omega t \\
& =-\omega^{2}(A \sin \omega t+B \cos \omega t) \\
\therefore \ddot{x}+\omega^{2} x & =(A \sin \omega t+B \cos \omega t)\left(\omega^{2}-\omega^{2}\right)=0 .
\end{aligned}
$$

so $x(t)=A \sin (\omega t)+B \cos (\omega t)$ is a solution to the equation.
i.b. if $x(t)=c \sin (\omega t-\varphi)$
then $\dot{x}(t)=\omega C \cos (\omega t-\varphi)$

$$
\ddot{x}(t)=-\omega^{2} c \sin (\omega t-\varphi)
$$

so $\ddot{x}(t)+\omega^{2} x=-\omega^{2} c \sin (\omega t-\varphi)+\omega^{2} c \sin (\omega t-\varphi)=0$
$\therefore x(t)=c \sin (\omega t-\mu)$ is also a solution.
1.C. if $x(t)=D \sin \omega t+E \cos (\omega t-F)$
then $\dot{x}(t)=D \omega \cos \omega t-E \omega \sin (\omega t-F)$

$$
\begin{aligned}
\ddot{x}(t) & =-\omega^{2} D \sin \omega t-\omega^{2} E \cos (\omega t-F) \\
& =-\omega^{2}(D \sin \omega t+E \cos (\omega t-F)) \\
& =-\omega^{2} x(t)
\end{aligned}
$$

So $\ddot{x}(t)+w^{2} x(t)=-w^{2} x(t)+w^{2} x(t)=0$.
so his $x(t)$ is also a solution to the differential equation. we have $x(t)=D \sin \omega t+E \cos (\omega t-F)$

$$
\begin{aligned}
& =D \sin \omega t+E(\cos \omega t \cos F+\sin \omega t \sin F) \\
& =D \sin \omega t+E \cos F \cos \omega t+E \sin F \sin \omega t \\
& =(D+E \sin F) \sin \omega t+E \cos F \cos \omega t
\end{aligned}
$$

if we set. $A=D+E \sin F$

$$
B=E \cos F
$$

then $\quad X(t)=A \sin \omega t+B \cos \omega t$
So we only need two arbitrary parameters.
2 a. $f(x)=\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(x) x^{n}$
So $\quad \sin x=\frac{1}{0!} \sin (0) x^{0}+\frac{1}{1!} \cos (0) x^{1}+\left.\frac{1}{2!}(-\sin x)\right|_{x=0} x^{2}$

$$
\begin{aligned}
& +\left.\frac{1}{3!}(-\cos x)\right|_{x=0} x^{3}+\left.\frac{1}{4!}(+\sin x)\right|_{x=0} x^{4}+\left.\frac{1}{5!}(\cos x)\right|_{x=0} x^{5}+0(1) \\
= & x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+O(1)
\end{aligned}
$$

b

$$
\begin{gathered}
y(x)=\frac{1}{\sqrt{x}}+x \\
y^{\prime}(x)=-\frac{1}{2} \frac{1}{x \sqrt{x}}+1=0 \\
\therefore x^{\frac{3}{2}}=\frac{1}{2} \\
x=\sqrt[3]{\frac{1}{4}}
\end{gathered}
$$

when $0<x<\sqrt[3]{\frac{1}{4}} \quad y^{\prime}(x)$
when $x>\sqrt[3]{\frac{1}{4}} \quad y^{\prime}(x)>0$
So at $x_{0}=\sqrt[3]{\frac{1}{4}} y(x)$ is minimal.

$$
\begin{aligned}
& y^{\prime \prime}(x)=-\frac{1}{2} \times\left(-\frac{3}{2}\right) x^{-\frac{5}{2}}=\frac{3}{4} x^{-\frac{5}{2}} \\
& y^{(3)}(x)=\frac{3}{4} \times\left(-\frac{5}{2}\right) x^{-\frac{7}{2}}=-\frac{15}{8} x^{-\frac{7}{2}} \\
\therefore \quad & y^{\prime \prime}\left(x_{0}\right)=\frac{3}{4} \times\left(\frac{1}{4}\right)^{\frac{1}{3} \times-\frac{5}{2}}=\frac{3}{4} \times\left(\frac{1}{4}\right)^{-\frac{5}{6}}=3 \times\left(\frac{1}{4}\right)^{\frac{1}{6}}=3 \times 4^{-\frac{1}{6}} \\
& y^{(3)}\left(x_{0}\right)=-\frac{15}{8} \times\left(\frac{1}{4}\right)^{\frac{1}{3} \times\left(-\frac{7}{2}\right)}=-\frac{15}{8} \times\left(\frac{1}{4}\right)^{-\frac{7}{6}}=-\frac{15}{2} \times\left(\frac{1}{4}\right)^{-\frac{1}{6}}=-\frac{15}{2} \times 4^{\frac{1}{6}}
\end{aligned}
$$

So $y(x)=y\left(x_{0}\right)+\frac{1}{1!} y^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2!} y^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\frac{1}{3!} y^{(3)}\left(x_{0}\right)\left(x-x_{0}\right)^{3}+0(1)$

$$
\left.=4^{\frac{1}{6}}+4^{-\frac{1}{3}}+\frac{1}{2} \times 3 \times 4^{-\frac{1}{6}}\left(x-\left(\frac{1}{4}\right)^{\frac{1}{3}}\right)^{2}+\frac{1}{6} \times\left(-\frac{15}{2}\right) \times 4^{\frac{1}{6}}\left(x-\left(\frac{1}{4}\right)^{\frac{1}{3}}\right)^{3}+\infty\right)
$$

3.

$$
\begin{aligned}
e^{j \theta} & =\cos \theta+j \sin \theta \\
z e^{j \theta} & =z \cos \theta+j z \sin \theta \\
\left|z e^{j \theta}\right| & =\left(z e^{j \theta} \cdot\left(z e^{j \theta}\right)^{*}\right)^{\frac{1}{2}} \\
& =\left(z \cdot z^{*} \cdot e^{j \theta} \cdot e^{-j \theta}\right)^{\frac{1}{2}} \\
& =|z|
\end{aligned}
$$

so there is no alteration of the length.

$$
\text { if } z=a+j b \text {. }
$$

the pole angle of z is ϕ

$$
\text { the tan } \phi=\frac{b}{a}
$$

$$
\begin{aligned}
z e^{i v} & =(a+j b)(\cos \theta+j \sin \theta) \\
& =a \cos \theta+a \sin \theta j+b \cos \theta j-b \sin \theta \\
& =(a \cos \theta-b \sin \theta)+j(a \sin \theta+b \cos \theta)
\end{aligned}
$$

set the new angle as ϕ^{\prime}.

$$
\text { then } \begin{aligned}
\tan \phi^{\prime} & =\frac{a \sin \theta+b \cos \theta}{a \cos \theta-b \sin \theta}=\frac{\left(\frac{a \sin \theta}{b \cos \theta}+1\right) b \cos \theta}{\left(1-\frac{b \sin \theta}{a \cos \theta}\right) a \cos \theta} \\
& =\frac{\frac{\tan \theta}{\tan \phi}+1}{1-\tan \theta \tan \phi} \cdot \tan \phi \\
& =\frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi}=\tan (\theta+\phi)
\end{aligned}
$$

$\therefore \phi^{\prime}=\theta+\phi \quad 50$ we show that multiplication of any complex number z by $e^{i \theta}$ can be described as a positive rotation by θ.

6

We want to know how much $\$ i^{i}$ is worth. We start by rearranging our given expression with the identity,

$$
i=e^{\ln i}
$$

So we have

$$
i^{i}=\left(e^{\ln i}\right)^{i}=e^{i \ln i}
$$

Notice also that

$$
i \frac{\pi}{2}=\ln \left(e^{\frac{i \pi}{2}}\right)=\ln \left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)=\ln i .
$$

Plugging this result into the previous equation gives us

$$
i^{i}=e^{i \ln i}=e^{i i \frac{\pi}{2}}=e^{-\frac{\pi}{2}}=0.21 .
$$

So $\$ i^{i}$ is 21 cents. It's worth it!
Comment: Think about what $\mathrm{e}^{\mathrm{i} \pi / 2}$ looks like graphically, in the complex plane -a 90° rotation!
7.a. $\quad X X=A \cos (\omega t+\alpha)$.
when $t=0 \quad x=0$.
that is $A \cos \alpha=0$. so $\alpha=\frac{\pi}{2}+k \pi . \quad k=0, \pm 1, \pm 2, \ldots$ $A=5 \mathrm{~cm}$.

$$
\begin{aligned}
& T=\frac{1}{1}=1 s=\frac{2 \pi}{\omega} \quad \text { so } \omega=2 \pi . \\
& \text { so } x=5 \cos \left(2 \pi t+\frac{\pi}{2}+k \pi\right)
\end{aligned}
$$

b. $\quad t=\frac{8}{3}$

$$
x=5 \cos \left(2 \pi \times \frac{8}{3}+\frac{\pi}{2}+\pi\right)=\frac{5 \sqrt{3}}{2} \cos k \pi
$$

$$
\frac{d x}{d t}=-5 \times 2 \pi \sin \left(2 \pi t+\frac{\pi}{2}+k \pi\right)
$$

so when $t=\frac{8}{3}$

$$
\begin{aligned}
& \frac{d x}{d t}=-10 \pi \sin \left(\frac{16}{3} \pi+\frac{\pi}{2}+k \pi\right)=5 \pi \cos k \pi \\
& \frac{d^{2} x}{d t^{2}}=-20 \pi^{2} \cos \left(2 \pi t+\frac{\pi}{2}+k \pi\right)
\end{aligned}
$$

so when $t=\frac{8}{3}$

$$
\frac{d^{2} x}{d t^{2}}=1-10 \pi^{2} \sqrt{3} \cos 2 x=-0, \sqrt{3} \pi^{2}-\cos \pi^{2} \pi
$$

9. a. $E=\int k\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)_{i}^{2} d A$.
where r_{1} and r_{2} has the dimension of L.
so $\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)^{2}$ has the dimension of L^{-2}.
and A has dimension of L^{2}
so $\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)^{2} d A$ is dimensionless.
that is k has the same dimensions as Energy.
b. $F=\alpha r v \eta \quad$ where α is a dimensionless constant.
dimensions of each parameter ate.
$F: M L T^{-2}$
$r: L$
$V=L T^{-1}$
so the dimension of to is
$M L T^{-2} \cdot L^{-1}$. $L^{-1} T=M L^{-1} T^{-1}$
that is η has dimensions of Mass $/[$ Time x Length $]$
(c) We know from the previous part that $[\eta]=\frac{[M]}{[T L]}$ and $[\kappa]=[E]=\frac{[M][L]^{2}}{[T]^{2}}$. We want to solve for the exponents in the following equation,

$$
[\tau]=[T]=[\lambda]^{a}[\kappa]^{b}[\eta]^{c}=[L]^{a}\left(\frac{[M][L]^{2}}{[T]^{2}}\right)^{b}\left(\frac{[M]}{[T L]}\right)^{c}
$$

This gives us three equations to solve corresponding to each unit

$$
\begin{aligned}
& 0=b+c \\
& 0=a+2 b-c \\
& 1=-2 b-c .
\end{aligned}
$$

Solving these equations tells us $b=-c, a=3 c$, and $c=1$. So,

$$
\tau \propto \text { (dimensionlessconstant) } \frac{\eta \lambda^{3}}{\kappa}
$$

(d) If we added z to our list of parameters we would have another exponent, d, to solve for. However, z has the same units as λ so we still only have three fundamental units to make equations from. This gives us three equations and four unknowns,

$$
\begin{aligned}
& 0=b+c \\
& 0=a+2 b-c+d \\
& 1=-2 b-c
\end{aligned}
$$

We cannot solve for all of the unknowns. The closest we can get is

$$
\tau \propto(\text { dimensionlessconstant }) \frac{\eta}{\kappa} \lambda^{\mathrm{a}} \mathrm{z}^{3-\mathrm{a}} .
$$

Side note: A full hydrodynamic theory treatment of this problem reveals $a=6$ and $d=-3$.

