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That's the same equation just like +he horizonts| case .
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(3) A rolling ball.

(a) As x >0, h = 4o, and as x = +00, h — +oo. Also thete is only one value of x for which

/
dh 1 a , a )"’ , ,
& = —EW +bis zero, namely X, = % . (From the first observation, or by looking at the second

derivative of h, it should be clear that h(xo) is a local minimum.) These two facts together mean h(x) must
look like

h

X

You could also have deduced this just from the first statement about the limits of h(x) and the shape of the
functions Vx and x.

(b) An equilibrium point is one at which the net force acting on an object is zero. Since F =——— this is

equivalent to the statement that an equilibrium point is one at which the spatial derivative of the potential
energy function is zero. For our system, the potential energy is simply the gravitational potential energy U(x)
= m g h(x). Therefore, from (a), there is only one equilibrium point.

2/3
(c) From above, there is only one equilibrium point, X, =| — . The ball rolls back and forth about this
2b

point. How do we determine the frequency of oscillation? There are three reasons to think that a Taylor
series expansion might help:
(i) We’re asked to recall the lectures of Week 1, in which we discussed why “any” oscillation is
harmonic.



(i) We’re asked to consider “small oscillations” about equilibrium, which begs for a Taylor series
expansion. (Why?)
(iif) Most importantly: Our ball is oscillating in an “unfamiliar” potential energy landscape:

U(x)= mg{% + bX:| . We could determine a differential equation describing its motion, but I
X

wouldn’t have the slightest idea what its solution would be. If only we could turn this U(x) into a form
for which we know the solution, perhaps a form that looks like the oscillations of a mass on a spring.
What is U(x) for a mass on a spring? Remembering it, ot very simply deriving it from F = -kx, we know
that Uspring = (1/2) k x2, where x is the displacement from equilibrium. This is a simple quadratic
polynomial. A Taylor seties is a polynomial expansion. Eurekal

And so we expand. In general, as I sincerely hope you all know by now, the expansion of U(x) about x=xg is

2
(x—x,)+ 19V
2 dx

to our U(x) expanded about our equilibrium point, we note that the (x-xo) term is zero, since the derivative of
U is zero there, and so

U(x) =U (%) + C:j_U (X — X )2 +... (higher order terms). Applying this
X

X=Xp X=Xg

du

dx?

(x=%, )" +...

X=Xg

U(x)=U(x0)+0+%

For small oscillations, we can neglect the higher order terms. So this looks just like Uspring = (1/2) k
x2 , since it’s just a constant times a quadratic displacement! You may be worried that there is a constant term
U(xo) in the above expression that does not show up in Uspring, but this doesn’t matter — one can arbitrarily

du

add or subtract a constant from any potential energy function; since F = ——— these constants don’t
X

translate into a physically meaningful force. You may be wortied that Usping = (1/2) k x2, while our
expression involves (x-xo)2. But think about what these symbols ean — for the spring, x is the displacement
from equilibrium, while for our ball, (x-xo) is the displacement from equilibrium. Hence our (x-x0) and the
spring’s x map onto the same physical concept.

Therefore our rolling ball “looks just like” a mass-on-a-spring, with an effective spring constant

d?U k3@ 3(2b)"
= e . Explicitly, K =— mg =—

4 XS/Z 4 a.2/3
and period T = 21/ are given by
4a2/3 21/67Za

U3

1

T=2x = — . (The last two expressions are equivalent; either is fine.)
3g(2b)5/3 N 3g

Let’s check the dimensions: h and x have dimensions of length, so, from the statement of h(x) it must be

that [a] = 1.3/2 and [b] = 1. Therefore [ period] = M2 \ ’# =T, as it should be.

k Mg . Therefore the angular frequency co:\/(“k” /m)

X=Xo




Another approach:
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