
 



 
 
 
(3)  A rolling ball. 
 
 (a) As x →0, h → +∞, and as x → +∞, h → +∞.  Also there is only one value of x for which  
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b
ax .  (From the first observation, or by looking at the second 

derivative of h, it should be clear that h(x0) is a local minimum.)  These two facts together mean h(x) must 
look like 

 
You could also have deduced this just from the first statement about the limits of h(x) and the shape of the 
functions √x and x. 

(b)  An equilibrium point is one at which the net force acting on an object is zero.  Since 
dx
dUF −= , this is 

equivalent to the statement that an equilibrium point is one at which the spatial derivative of the potential 
energy function is zero.  For our system, the potential energy is simply the gravitational potential energy U(x) 
= m g h(x).  Therefore, from (a), there is only one equilibrium point. 

(c)  From above, there is only one equilibrium point, 
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b
ax .  The ball rolls back and forth about this 

point.  How do we determine the frequency of oscillation?  There are three reasons to think that a Taylor 
series expansion might help: 

(i)  We’re asked to recall the lectures of Week 1, in which we discussed why “any” oscillation is 
harmonic.   
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(ii)  We’re asked to consider “small oscillations” about equilibrium, which begs for a Taylor series 
expansion.  (Why?) 
(iii)  Most importantly:  Our ball is oscillating in an “unfamiliar” potential energy landscape:  
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amgxU )( .  We could determine a differential equation describing its motion, but I 

wouldn’t have the slightest idea what its solution would be.  If only we could turn this U(x) into a form 
for which we know the solution, perhaps a form that looks like the oscillations of a mass on a spring.  
What is U(x) for a mass on a spring?  Remembering it, or very simply deriving it from F = -kx, we know 
that Uspring = (1/2) k x2, where x is the displacement from equilibrium.  This is a simple quadratic 
polynomial.  A Taylor series is a polynomial expansion.  Eureka! 

And so we expand.  In general, as I sincerely hope you all know by now, the expansion of U(x) about x=x0 is 
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(higher order terms).  Applying this 

to our U(x) expanded about our equilibrium point, we note that the (x-x0) term is zero, since the derivative of 
U is zero there, and so  
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 For small oscillations, we can neglect the higher order terms.  So this looks just like Uspring = (1/2) k 
x2 , since it’s just a constant times a quadratic displacement!  You may be worried that there is a constant term 
U(x0) in the above expression that does not show up in Uspring, but this doesn’t matter – one can arbitrarily 

add or subtract a constant from any potential energy function; since 
dx
dUF −= , these constants don’t 

translate into a physically meaningful force.  You may be worried that Uspring = (1/2) k x2 , while our 
expression involves (x-x0)2.  But think about what these symbols mean – for the spring, x is the displacement 
from equilibrium, while for our ball, (x-x0) is the displacement from equilibrium.  Hence our (x-x0) and the 
spring’s x map onto the same physical concept. 
 Therefore our rolling ball “looks just like” a mass-on-a-spring, with an effective spring constant 
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== .  Therefore the angular frequency ω=√(“k”/m) 

and period T = 2π/ω are given by  
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3/2 ππ == .  (The last two expressions are equivalent; either is fine.) 

Let’s check the dimensions:  h and x have dimensions of length, so, from the statement of h(x) it must be 

that [a] = L3/2 and [b] = 1.  Therefore T
TL

Lperiod == 2
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1][ , as it should be. 

 
 
 
 
 
 
 
 
 



Another approach: 
 

 



 



 


