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(1, 8 pts.)  A pendulum.  Consider a pendulum with a bob of mass m and a string of length L.   
(a, 1 pt.)  Derive the general solution to the equation of motion θ(t) (i.e. for arbitrary initial conditions).  
Determine the period as a function of g and L.  Start by considering the force acting on the mass, applying 
Newton’s laws, obtaining a differential equation, etc.  Yes, I know we did this in class. 
(b, 3 pts.)  Derive the general solution to the equation of motion θ(t) by considering the energetics of the 
system – i.e. noting that energy is conserved and considering the kinetic and potential energies of the system.  
Drawing clear diagrams of the pendulum geometry will help.  Again, obtain a differential equation, and find 
(and verify) its general solution. 
(c, 2 pts.)  The pendulum is set up such that at time t=0 it has zero velocity and is at angle θ0 radians with 
respect to the vertical.  What is θ(t) for these particular initial conditions? 
(d, 2 pts.)  Continuing the setup of part (c), suppose θ0 = 15 degrees, m = 1kg, and L = 1 meter.  How fast is 
the pendulum bob moving as it passes the lowest point of its arc?  (Note that I’m asking for the actual speed, 
e.g. meters/second, not the angular velocity.) 
 
 
(2, 9 pts.)  A modified U-tube.  In class (and in the text) we 
considered oscillations of a fluid of density ρ about its equilibrium 
position in a U-shaped tube.  Consider a modified U-tube, in which 
the left arm has radius r, the bottom tube has radius r, and the right 
arm has radius αr, where α is some constant. (See figure.)  At 
equilibrium, water reaches to height h in each arm.  The length of the 
base of the tube is d.  (So in terms of our earlier simple U-tube, L = d + 2h).  The water sloshes back and 
forth, its height being denoted by y1(t) in the left arm and y2(t) in the right arm (both defined as positive 
upwards from the equilibrium height – see Figure).  As usual, ignore any complications due to the shape of 
the tube at the corners; consider the corners to be small compared to other lengths. 
(a, 1 pt.)  How are y1 and y2 related?  (In other words, if the water level drops by some height in the left arm, 
how much does it rise in the right arm?) 
(b, 3 pts.)  What is the potential energy of the system?  Express your answer as a function of y1 and constant 
parameters only – i.e. removing any explicit dependence on y2 using your result for part (a). 
(c, 2 pts.)  What is the kinetic energy?  (Again, as a function of y1 and constant parameters only.) 
(d, 3 pts.)  Consider small oscillations – i.e. hy <<1 and hy <<2  .  What is the angular frequency of 
oscillations, ω, for the system?  Show also that your answer reduces to the ω of a simple U-tube (discussed in 
class) if α = 1.  (Note: small oscillations mean that you should consider the smallest nonzero terms in y .  So 
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(3, 4 pts)  Average Energy.  Show that for a simple harmonic oscillator, e.g. a mass attached to a spring, 
described as usual by x(t) = A sin(ωt-ϕ), the time-average of the kinetic energy and the time-average of the 
potential energy are both equal to ¼kA2, where k is the spring constant and A is the amplitude.  Note that 
you can just average expressions for kinetic and potential energy over one period, since the motion is 
periodic.  (You may wish to remind yourself, via an elementary calculus text, how to calculate the average 
value of a function.  Though there’s a “quick” way to solve this problem doesn’t require such a calculation...) 
 
 
(4, 6 pts)  An LC circuit.  Oscillations form an important part of electrical 
circuit design.  Let’s consider a simple “LC circuit,” in which an inductor (of 
inductance L) and a capacitor (of capacitor C) are arranged in series (see figure).  
Let’s say there is no voltage supply in the circuit, but that the capacitor is 
initially charged to voltage V0, and the switch (S) is closed, completing the    
circuit, at time t=0.  Recall1 that the total voltage drop (ΣV) as one traces any “loop” of any circuit is zero, the 
voltage across an inductor is VL = L dI/dt, the voltage across a capacitor is VC = Q/C, and the current 
flowing in the circuit I = dQ/dt – the rate of change of the electrical charge. 
(a, 2 pts)  Show that the condition ΣV = 0 implies that Q is described by a differential equation that has the 
same form as our familiar “mass on a spring” equation. 
(b, 2 pts)  Show that the current (I) oscillates with an angular frequency 

LC
1=ω . 

(c, 2 pts)  Express Q(t) in terms of only L, C, and V0 – i.e. incorporating the “initial conditions” to determine 
the amplitude and phase of the oscillations, as well as the frequency. 

 
 
(5, 5 pts.)  Arrangements of Springs.  We 
know that a mass m hanging from a spring of 
spring constant k oscillates with angular 
frequency ω = √(k/m).  (E.g., Problem Set 2.) 
(a, 2 pts.) Determine the frequency of oscillation 
for a mass m hanging from two springs of spring 
constant k  “in parallel,” as shown in part (a) of the Figure.  Think carefully about how force and extension 
are related – if you want to move the mass by some amount, how much force do you need to apply relative to 
the single spring case?  If you find yourself doing much calculation, you’re probably on the wrong track. 
(b, 2 pts.) Determine the frequency of oscillation for a mass m hanging from two springs of spring constant k 
“in series,” as in Figure (b).  Think carefully: if you apply some force, how much will each spring stretch? 
(c, 1 pt.) Think of an arrangement of four springs of spring constant k that will lead to the same oscillation 
frequency as that of a single spring, i.e. ω = √(k/m).  Draw it.   
 
 
(6, 3 pts.)  Critical Damping.  In class we stated (or will state) that a critically damped oscillator (i.e. one for 
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[Survey, optional]  Roughly how many hours did you spend on this assignment? 

                                                 
1 Familiarity with circuits is not a prerequisite for the course, though you’ve probable seen simple circuit elements like 
these in earlier classes.  If not, don’t worry: all the information you need is contained within the problem.   


