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Physics 351 – Vibrations and Waves 

 
Problem Set 4 

 
Due date:  Friday, Oct. 26, 5 pm. 
 
Reading:  French Chapter 3; start Chapter 4. 
 
 
(1, 3 pts.)  A Tuning Fork.  A tuning fork rings at “A above middle C,” a frequency of f = 440 Hz.  
(Note that this is the frequency, f, not the angular frequency, ω.)  The intensity of the sound, which 
is proportional to the energy of the oscillating fork, decreases by factor of 5 in 4 seconds.   
• (a, 1 pt.)  Without doing any math, except perhaps some simple arithmetic, we know that the 

system is weakly damped.  Why? 
• (b, 2 pts.)  What is the Q of the tuning fork? 

  
 
(2, 5 pts.)  An object of mass 0.3 kg is attached to a spring of spring constant 240 N/m.  The object 
is subject to a resistive force given by bvF −= , where v is the velocity in meters per second. 

• (a, 2 pts.)  If the damped frequency is 3
7 times the frequency in the absence of damping, 

what is the value of the damping constant, b? 
• (b, 2 pts.)  What is the Q of the system? 
• (c, 1 pt.)  By what factor is the amplitude of the oscillation reduced after 10 cycles? 

 
 
(3, 6 pts.)  A tethered cart on a track.  A cart of mass m can roll along a 
frictionless one-dimensional track, but cannot leave the track.  Its top is 
tethered to a spring of spring constant k that is attached to a fixed point.  
The spring is stretched to a length l that is much larger than the equilibrium 
(unstretched) spring length 0l .  See figure. Think about how the “smallness” 
of the oscillations simplifies the trigonometry of the setup.  (Hint: only the 
lowest order terms in expansions as a function of (x/l) are relevant.)  

• (a, 2 pts.)  Write down the differential equation of motion (i.e. apply Newton’s Laws) for small 
oscillations of the cart about x=0, the equilibrium position.  (There is no damping.) 

• (b, 2 pts.)  Determine the angular frequency of small oscillations, ω. 
• (c, 2 pts.)  Now let’s introduce damping: Due to friction, the cart’s motion is damped by a drag 

force bvF −= , where v is the velocity in the x-direction.  If l is increased, will the Q-factor of 
the oscillations increase or decrease? 

 
 



(4, 6 pts.)  Initial conditions.  Consider our “usual” damped mass on a spring, i.e. the damping 
force is bvF −=  and the restoring force is kxF −= , where x is position and v is velocity.  As usual, 

you can define 
m
k

=2
0ω  and 

m
b

=γ .  At time t=0 the mass is released from position x = x0 with 

zero velocity.   
• (a, 2 pts.)  Suppose the damping is such that the system is underdamped.  We know, from 

class, that the general solution to the equation of motion can be written 
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cos)( 2 .  Find the particular solution x(t) for these initial conditions.  In other 

words, find the particular amplitude factor “A” and phase offset “ϕ.”  Hints: (i) Don’t be 
dismayed if your answer isn’t as “clean” as that of an undamped oscillator.  (ii) Recall 
trigonometry.  If tan(α)=a/b, what is sin(α)?  (I can never remember, which is why I draw 
triangles and figure out the answer.)  (iii) Two ways to check your answer:  You should be able 
to show that if 0→γ , you recover the simple, expected x(t).  And if γ=2ω, your phase offset 
should be π/4 radians and A should be x0√2. 

• (b, 2 pts.)  Suppose b is such that the system is overdamped.  Find the particular solution x(t) 
for these initial conditions.  (i.e. find the two undetermined parameters to the general x(t) 
equation.) 

• (c, 2 pts.)  Suppose b is such that the system is critically damped.  Find the particular solution 
x(t) for these initial conditions. 

 
 
(5, 10 pts.)  Critical damping.  I claimed in class that the critically damped oscillator exhibits the 
fastest decay to equilibrium without overshooting – in other words, it is faster than the overdamped 
oscillator.  This may seem counter-intuitive – shouldn’t the overdamped oscillator be “squashed” 
quickly to x=0?  The issue is important, since in all sorts of oscillators ranging from shock absorbers 
in cars to electrical circuits, one often wants deviations from equilibrium to die out as quickly as 
possible.  Consider the setup of Problem 4, in which x(t=0) = x0 and v(t=0)=0.  Prove that the 
critically damped oscillator decays more rapidly than the overdamped oscillator.  There are 
several ways to do this; I suggest proving that for all times, t, x(t) for the overdamped system is 
greater than x(t) for the critically damped system.  This is a challenging problem; if you find that this 
is the first problem set on which you can’t answer all the problems, don’t be too sad.  One hint: You 

may wish to expand in a Taylor series in βt, where 2
0

2

4
ωγβ −= , though we’re not limiting 

ourselves to small βt so you can’t neglect any terms in the infinite series expansion. 
 
 
  
(6, 7 pts.)  Radiation from an accelerated charge.  Mr. K. builds an oscillator consisting of an 
electron oscillating back and forth harmonically with frequency f and amplitude A, and with clever 
combinations of vacuums and electric fields manages to eliminate all friction from the system.  
(Note that f is the frequency, not the angular frequency.)  “At last,” he says, “a perfectly undamped 
oscillator!”  He doesn’t realize, however, that any electrically charged object, when accelerated, will 



radiate energy in the form of electromagnetic waves.  The radiated power is 3
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where q is the charge, a is the acceleration, and c is the speed of light.  An electron has charge q = 
1.60 x 10-19 C and mass m = 9.11 x 10-31 kg. 
(a, 3 pts.)  What fraction of the initial energy of the oscillator is radiated away after one cycle?  (You 
may find the math of PS3 useful.)  Is the damping weak or strong? 
(b, 3 pts.)  Estimate the Q of this oscillator in terms of q, f, etc.  Hint:  Recall the Taylor expansion 
of ey; for small y, what is the lowest order term in y?  You’ll use m in your expression for the initial 
energy of the electron.   
(c, 1 pt.)  Evaluate your answer from (c) numerically for f corresponding to the oscillation frequency 
of red light.  (Red light has a wavelength around λ ≈ 650 × 10-9 m; wavelength and frequency are 
related by λ f =c.)  Think about whether the Q value you find is consistent with your conclusions for 
part (a). 
 
(7, 9pts: 3,6)  Resonance of a simple 
pendulum – experiment.  In class, we’ve 
begun to discuss the effect of periodic driving 
forces on oscillating systems.  The most 
important concepts that emerge are those of 
“resonance” and differences in response above 
and below resonance frequencies.  Here, we’ll 
try to develop some intuition about resonance.  
For this exercise you’ll do a simple experiment 
and describe the results.  Write at most 300 
words describing what you’ve done and what 
you’ve observed.  You’ll be graded on the 
content of your response as well as the clarity 
of your writing.  Type your answer.  
Communication skills, by the way, are vital for 
any practicing scientist – the majority of your 
professor’s time, for example, is spent reading 
and writing scientific papers, preparing 
presentations, and writing long grant 
applications. 

 

To start, create a simple pendulum – a mass on a string – for example, keys at the end of a 
shoelace.  As you’re holding the end of the string, move your hand back and forth (horizontally), 
varying the period of your hand’s oscillations (see the figure).  Watch the response of the mass.  Try 
frequencies that are small and large.  Describe the amplitude of the motion of the mass (i.e. how far 
it’s moving back and forth) and the “phase” relative to your hand (i.e. if it moves in the same 
direction as your hand or opposite to it).  By watching the phase response as a function of your 
hand’s driving frequency, estimate the natural frequency of the simple pendulum.  (Admittedly, this 
is not a very precise way to measure the natural frequency!)  Compare your estimate with what you’d 
“expect” for the pendulum (i.e. the theoretical value of the natural frequency). 
 


