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Problem Set 4: SOLUTIONS 

 
 
(1)  A Tuning Fork.   
(a)  The tuning fork is underdamped (or else we couldn’t hear a continuous tone, because there wouldn’t be 
any oscillations of the air).  Since f = 440 Hz, the period T =1/f is around 2 ms.  The tone persists for several 
seconds, so the decay time is much larger than the oscillation time.  Therefore the system is weakly damped. 
(b)  The energy of an underdamped oscillator decays according to t
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The frequency f = 440 Hz, and by definition ω = 2πf.  The Q factor Q = ω0/γ.  Since the system is weakly 
damped, we know that 0ωω ≈ .  (If you don’t believe this, use the above value of γ and solve 
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(6) Radiation from an accelerated charge.  Our electron is oscillating harmonically – therefore we already 
know that ( ) sin(2 )x t A ftπ= , where I’ve set the phase offset to zero because it won’t affect anything.  (If 
this bothers you, go ahead and write it in.) 
 
(a)  We recall that power is the rate of change of energy.  We are given the rate of energy loss as 
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integral we need to know the acceleration of the particle, a., which follows simply from x(t):  
2(2 ) sin(2 )x f A ft aπ π= = .  Returning to the integral we have, 
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We did this integral in the last problem set – it’s just 2
T , or 1

2 f ,where T is the period, since the average 

value of sin2 is ½ – so: 
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The initial energy of the oscillator is simply 2 2 2
0 0

1 1
2 2

E kA m Aω= = , using 0 ( / )k mω = , where 

0 2 fω π= , given by the initial oscillation condition.  Therefore: 
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It is instructive to plug in numbers – we’ll return to this in a moment. 
(b)  We know that in general, the energy of a damped oscillator decays like 
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expression can tell us how much energy is lost after one cycle.  Our answer from (a) also tells us how much 
energy is lost after one cycle.  These two values must be the same!  Let’s connect them.  Assuming weak 
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with our answer to part (a), we see that: 
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(c)  Let us use λ ≈ 650 × 10-9 m (hence the frequency f = 4.61 × 1014 Hz) and the charge and mass values 

given in the problem.  (I forgot to write that 0ε = 8.85 × 10-12 m-3 kg-1 s4 A2, but this is easy to look up.)  

Therefore  
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.  Q is very large, justifying our assumption of weak damping. 

 
 



(7)  Experimenting with resonance.  Of course, answers will vary from person to person; take this as a guide. A good, 
brief response will include a description of the experimental system, a quantitative discussion of observations, and a comparison of 
observations with theoretical expectations. – RP 
 I created a simple pendulum using keys hanging from a metal chain of length l  = 49 cm. The keys 
are much heavier than the chain, approximating an “ideal” simple pendulum. I drove the pendulum by 
moving my hand, holding the chain, back and forth horizontally with varying frequencies. Using a clock, I 
measured the period of the driving force by measuring the time required for ten cycles of my hand’s motion 
and dividing by ten. Experimental setup – 3 pts. 
 At low driving frequencies (e.g. a period of 2.0 s) the keys moved with a small amplitude, similar to 
that of my moving hand, and moved in phase with my hand.  At high driving frequencies (e.g. a period of 0.5 
s) the keys again moves with a small amplitude, but out of phase with my hand – i.e. moving “left” when my 
hand was moving “right.” The maximal amplitude of the keys’ oscillation occurred at a driving period of Tr = 
1.3 seconds, or a period of f = 1/T = 0.77 Hz, which I will identify as resonance. At resonance, the amplitude 
of oscillation was so great that the chain would make angles of over 45° with the vertical. It was difficult to 
assess the phase of the response, but it seemed that my hand was moving most rapidly when the keys were at 
the end-points of their cycle, consistent with a 90 degree phase shift. Observations – 3 pts. 

 Given the length of the chain (stated above), I would expect a resonant frequency f expect = 
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= 0.71 Hz. This agrees well with the observed value of f = 0.77 Hz, given the precision of the experiment. 
Comparison with theory / discussion – 3 pts. 
 
 


