Prof. Raghuveer Parthasarathy

University of Oregon; Fall 2007 Physics 351 – Vibrations and Waves

Problem Set 5: SOLUTIONS

(1) The bouncing man.

(a) We need to find ω_0 , which we know from earlier work equals $\sqrt{k/m}$. What is the spring constant, k? Then the man is attached, the spring is extended by x = 20cm from its un-stretched equilibrium; at this point

mg = kx, as we've seen before (problem set 2). Therefore $k = \frac{mg}{x}$ and $\omega_0 = \sqrt{k/m} = \sqrt{\frac{g}{x}}$.

Numerically, $\omega_0 = 7$ radians/second.

(b) I drive the oscillator with a harmonic force $F = F_0 \cos(\omega t)$. What is F_0 ? I move my hand with an amplitude B, stretching and compressing the spring. The force conveyed by the spring is therefore *k*B, and so $F_0 = k$ B. The *response* of the man is oscillation with an amplitude of A = 8 cm. We know that

$$A(\omega) = \frac{F_0}{k} \frac{\frac{\omega_0}{\omega}}{\sqrt{\left(\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0}\right)^2 + \frac{1}{Q^2}}},$$

one of our many expressions for A(ω). At resonance ($\omega = \omega_0$), therefore, $A = \frac{F_0}{k}Q$. From above, A = BQ, and so Q=A/B= 8cm / 0.5cm = Q=16.

(c) The approximate $\overline{P}(\omega)$ relation $\overline{P}(\omega) = \frac{\gamma F_0^2}{2m} \frac{1}{\left[4(\omega_0 - \omega)^2 + \gamma^2\right]}$. We're concerned with $\omega = \alpha \omega_0$,

where
$$\alpha = 1.05$$
. Rewriting, $\overline{P}(\omega) = \frac{\gamma F_0^2}{2m} \frac{1}{\omega_0^2 \left[4(1-\alpha)^2 + \frac{1}{Q^2} \right]} = \frac{F_0^2}{2m\omega_0 Q} \frac{1}{\left[4(1-\alpha)^2 + \frac{1}{Q^2} \right]}$. Plugging

in all the numbers, k=4.9 N/m, $F_0=kB=0.0245 \text{ N}$, and $\overline{P}(\omega) = 0.002 \text{ Watts.}$ (You can check that the above expression is dimensionally correct.)

(2) Series RLC radio: As discussed in class and in the text, the maximum power absorption for a damped, driven oscillator occurs when the driving frequency (ω) equals the natural frequency (ω_0). (Keep in mind ω is the angular frequency, *f* is the "usual" frequency (cycles per unit time), and $\omega = 2\pi f$.) Also as discussed in class and in the text, $\omega_0 = \sqrt{1/(LC)}$ for a series RLC circuit.

(a) We want $\omega_0 = 2\pi 88.1$ MHz, using C = 5 pF. Therefore we need an inductor

$$L = \left(C\omega_0^2\right)^{-1} = 6.5 \times 10^{-7} H$$

(b) The width (in frequency) of the resonance of a series RLC circuit, as discussed in class and in the text, is $\Delta f = (1/2\pi)\Delta\omega \approx R/L$, i.e. $(1/2\pi) \times 100\Omega / (0.65 \times 10^{-6})H = 24$ MHz. In other words, the circuit will pick up the desired 88.1 MHz signal, as well as every station near it in a 24 MHz window. As you might realize

looking at an FM dial, there are lots of stations in this range! A plot of P(f), the power absorption at various frequencies:

(3) Overdamped oscillator motion. We know that the general solution to the motion of an overdamped oscillator is $x(t) = A_1 e^{-\left(\frac{\gamma}{2} + \beta\right)t} + A_2 e^{-\left(\frac{\gamma}{2} - \beta\right)t}$. We are told that x(t=0) = 0 and $v(t=0) = v_0$. Therefore $x(t=0) = A_1 + A_2 = 0$, so $A_1 = -A_2$.

We could also note that the derivative $\dot{x}(t) = -A_1\left(\frac{\gamma}{2} + \beta\right)e^{-\left(\frac{\gamma}{2} + \beta\right)t} - A_2\left(\frac{\gamma}{2} - \beta\right)e^{-\left(\frac{\gamma}{2} - \beta\right)t}$,

so $\dot{x}(t=0) = -A_1\left(\frac{\gamma}{2} + \beta\right) - A_2\left(\frac{\gamma}{2} - \beta\right) = A_2\left(\frac{\gamma}{2} + \beta\right) - A_2\left(\frac{\gamma}{2} - \beta\right) = 2A_2\beta = v_0$, and thereby solve

for A₂, but we'll see that this isn't even necessary for this problem.

Our particular solution
$$x(t) = A_1 \left[e^{-\left(\frac{\gamma}{2} + \beta\right)t} - e^{-\left(\frac{\gamma}{2} - \beta\right)t} \right] = A_1 e^{-\frac{\gamma}{2}t} \left[e^{-\beta t} - e^{+\beta t} \right]$$
. Clearly,

this is zero at t=0, as constructed. Is x(t)=0 anywhere else? The prefactor $e^{-\frac{t}{2}t}$ is of course always positive (except at t $\rightarrow \infty$), so for x(t) to be zero, we need $e^{-\beta t} - e^{+\beta t} = 0$, i.e. $e^{-\beta t} = e^{+\beta t}$. Taking logarithms, $-\beta t = \beta t$, which is satisfied only at t=0. So no, x(t) is never zero except at t=0, therefore the door never hits Mr. K.

4. Driven ascillator response.

$$m\ddot{x} + b\dot{x} + kx = F_{0}c_{3}\omega t.$$

$$\ddot{x} + \frac{b}{m}\dot{x} + \frac{b}{m}g = \frac{F_{0}}{m}c_{3}\omega t.$$

$$\ddot{x} + y\dot{x} + \omega_{0}^{2}x = F_{0}/m c_{3}\omega t.$$

$$then A(\omega) = \frac{F_{0}/m}{(\omega_{0}^{2}-\omega^{2})^{2}+(y\omega)^{2}}y^{y_{0}}$$
(a) at $\omega = \omega_{0}$

$$A(\omega) = \frac{F_{0}/m}{(\omega_{0}^{2}-\omega^{2})^{2}+(y\omega)^{2}} < 0$$

$$\therefore at \omega = \omega_{0}, A(\omega) \text{ is decreasing function.}$$
(c) $-ton\delta(\omega) = \frac{y\omega}{\omega_{0}^{2}-\omega^{2}} = \frac{\omega\omega_{0}}{(g(\omega_{0}^{2}-\omega^{2})^{2})}$

$$\therefore \frac{dton\delta(\omega)}{d\omega} = \frac{dton\delta}{d\delta} = \frac{d\delta}{d\delta}$$

$$= \frac{1}{c_{0}^{2}5} \frac{d\delta}{d\omega} = \frac{d\omega}{d\delta} \frac{(\omega\omega_{0}\omega_{0})}{(g(\omega_{0}^{2}-\omega^{2})^{2})} = \frac{\omega_{0}(\omega_{0}^{2}-\omega^{2})}{(g(\omega_{0}^{2}-\omega^{2})^{2})}$$

$$= \frac{\omega_{0}(\omega_{0}^{2}+\omega^{2})}{(g(\omega_{0}^{2}-\omega^{2})^{2}} = \frac{(\omega_{0}^{2}-\omega^{2})}{(g(\omega_{0}^{2}-\omega^{2})^{2})}$$

$$\frac{d\delta}{d\omega} = \frac{d\omega_{0}}{(\omega_{0}^{2}-\omega^{2})^{2}} = \frac{(\omega_{0}^{2}-\omega^{2})^{2}}{(g(\omega_{0}^{2}-\omega^{2})^{2})} = \frac{(\omega_{0}^{2}-\omega^{2})^{2}}{(g(\omega_{0}^{2}-\omega^{2})^{2}} = \frac{(\omega_{0}^{2}-\omega^{2})^{2}}{((\omega_{0}^{2}-\omega^{2})^{2}} = \frac{(\omega_{0}^{2}-\omega^{2})^{2}}{((\omega_{0}^{2}-\omega^{2})^{2})} = \frac{(\omega_{0}^{2}-\omega^{2})^{2}}{((\omega_{0}^{2}-\omega^{2})^{2}} = \frac{(\omega_{0}^{2}-\omega^{2})^{2}}{((\omega_{0}^{2}-\omega^{2})^{2})^{2}} = \frac{(\omega_{0}^{2}-\omega^{2})^{2}}{((\omega_{0}^{2}-\omega^{2})^{2})^{2}}$$

 $\frac{d\delta}{dw} = \frac{W_0 (w_0^2 + w^2)}{Q(w_0^2 - w^2)^2} \cdot \frac{(w_0^2 - w^2)^2}{(w_0^2 - w^2)^2 + l^2 w^2} = \frac{W_0 (w_0^2 + w^2)}{Q[(w_0^2 - w^2)^2 + l^2 w^2]}$ at $w = w_{p}$ $\frac{d\delta}{dw} = \frac{w_0 \cdot 2w_0^2}{Q \cdot \gamma^2 w_0^2} = \frac{2w_0}{Q \cdot \frac{w_0^2}{Q^2}} = \frac{2Q}{w_0}$: at w=w, do is an increasing function of Q

(5)

French 4-14. (a) $\overline{p}(w) = \frac{F_0^2 w_0}{2kQ} \frac{1}{(\frac{w_0}{1/2} - \frac{w_0}{w_0})^2 + \frac{1}{N^2}}$ when w = 0.98 W2 $\overline{p}(0.98W_{0}) = \frac{\overline{F_{0}}^{2}W_{0}}{2kQ} \frac{1}{\left(\frac{1}{0.98} - 0.98\right)^{2} + \frac{1}{Q^{2}}} = \frac{1}{2} \frac{\overline{F_{0}}^{2}W_{0}}{2kQ} \frac{1}{Q^{2}}$ +hat is $\left(\frac{1}{0.98} - 0.98\right)^2 + \frac{1}{Q^2} = \frac{2}{Q^2}$. $Q^2 = \frac{1}{\left(\frac{1}{0.93} - 0.78\right)^2}$ $Q = \frac{1}{\frac{1}{-0.98} - 0.98} = 24.75 = 25$ (b) $Q = \frac{u_{Q}}{\gamma}$ $\therefore \gamma = \frac{W_0}{Q} = \frac{W_0}{25} = 0.04 W_0$ $\frac{(c)}{E} = \frac{1}{2} e^{-\gamma T} = \frac{1}{2} \left(-\gamma T \right) = \gamma T = 0.04W_0 \cdot \frac{2\pi}{W_0} = 0.08\pi \left(\frac{2}{2} \right)$