Prof. Raghuveer Parthasarathy
University of Oregon; Fall 2007
Physics 351 - Vibrations and Waves

Problem Set 5: SOLIIONS

(1) The bouncing man.

(a) We need to find ω_{0}, which we know from earlier work equals $\sqrt{ }(\mathrm{k} / \mathrm{m})$. What is the spring constant, k? Then the man is attached, the spring is extended by $\mathrm{x}=20 \mathrm{~cm}$ from its un-stretched equilibrium; at this point $\mathrm{mg}=k x$, as we've seen before (problem set 2). Therefore $k=m g / x$ and $\omega_{0}=\sqrt{k / m}=\sqrt{\frac{g}{x}}$.
Numerically, $\omega_{0}=7$ radians/second.
(b) I drive the oscillator with a harmonic force $\mathrm{F}=\mathrm{F}_{0} \cos (\omega \mathrm{t})$. What is F_{0} ? I move my hand with an amplitude B , stretching and compressing the spring. The force conveyed by the spring is therefore $k \mathrm{~B}$, and so $\mathrm{F}_{0}=k \mathrm{~B}$. The response of the man is oscillation with an amplitude of $\mathrm{A}=8 \mathrm{~cm}$. We know that

$$
A(\omega)=\frac{F_{0}}{k} \frac{\omega_{0} / \omega}{\sqrt{\left(\frac{\omega_{0}}{\omega}-\frac{\omega}{\omega_{0}}\right)^{2}+\frac{1}{Q^{2}}}}
$$

one of our many expressions for $\mathrm{A}(\omega)$. At resonance $\left(\omega=\omega_{0}\right)$, therefore, $A=\frac{F_{0}}{k} Q$. From above, $A=B Q$, and so $\mathrm{Q}=\mathrm{A} / \mathrm{B}=8 \mathrm{~cm} / 0.5 \mathrm{~cm}=\mathbf{Q}=16$.
(c) The approximate $\bar{P}(\omega)$ relation $\bar{P}(\omega)=\frac{\gamma F_{0}^{2}}{2 m} \frac{1}{\left[4\left(\omega_{0}-\omega\right)^{2}+\gamma^{2}\right]}$. We're concerned with $\omega=\alpha \omega_{0}$, where $\alpha=1.05$. Rewriting, $\bar{P}(\omega)=\frac{\gamma F_{0}{ }^{2}}{2 m} \frac{1}{\omega_{0}{ }^{2}\left[4(1-\alpha)^{2}+\frac{1}{Q^{2}}\right]}=\frac{F_{0}{ }^{2}}{2 m \omega_{0} Q} \frac{1}{\left[4(1-\alpha)^{2}+\frac{1}{Q^{2}}\right]}$. Plugging
in all the numbers, $k=4.9 \mathrm{~N} / \mathrm{m}, \mathrm{F}_{0}=k \mathrm{~B}=0.0245 \mathrm{~N}$, and $\bar{P}(\omega)=\mathbf{0} .002$ Watts. (You can check that the above expression is dimensionally correct.)
(2) Series RLC radio: As discussed in class and in the text, the maximum power absorption for a damped, driven oscillator occurs when the driving frequency (ω) equals the natural frequency (ω_{0}). (Keep in mind ω is the angular frequency, f is the "usual" frequency (cycles per unit time), and $\omega=2 \pi f$.) Also as discussed in class and in the text, $\omega_{0}=\sqrt{1 /(L C)}$ for a series RLC circuit.
(a) We want $\omega_{0}=2 \pi 88.1 \mathrm{MHz}$, using $\mathrm{C}=5 \mathrm{pF}$. Therefore we need an inductor
$L=\left(C \omega_{0}^{2}\right)^{-1}=6.5 \times 10^{-7} \mathrm{H}$.
(b) The width (in frequency) of the resonance of a series RLC circuit, as discussed in class and in the text, is $\Delta \mathrm{f}=(1 / 2 \pi) \Delta \omega \approx \mathrm{R} / \mathrm{L}$, i.e. $(1 / 2 \pi) \times 100 \Omega /\left(0.65 \times 10^{-}\right) \mathrm{H}=24 \mathrm{MHz}$. In other words, the circuit will pick up the desired 88.1 MHz signal, as well as every station near it in a 24 MHz window. As you might realize
looking at an FM dial, there are lots of stations in this range! A plot of $\mathrm{P}(\mathrm{f})$, the power absorption at various frequencies:

(3) Overdamped oscillator motion. We know that the general solution to the motion of an overdamped oscillator is $x(t)=A_{1} e^{-\left(\frac{\gamma}{2}+\beta\right) t}+A_{2} e^{-\left(\frac{\gamma}{2}-\beta\right) t}$. We are told that $x(\mathrm{t}=0)=0$ and $\nu(\mathrm{t}=0)=v_{0}$. Therefore $x(t=0)=A_{1}+A_{2}=0$, so $A_{1}=-A_{2}$.

We could also note that the derivative $\dot{x}(t)=-A_{1}\left(\frac{\gamma}{2}+\beta\right) e^{-\left(\frac{\gamma}{2}+\beta\right) t}-A_{2}\left(\frac{\gamma}{2}-\beta\right) e^{-\left(\frac{\gamma}{2}-\beta\right) t}$, so $\dot{x}(t=0)=-A_{1}\left(\frac{\gamma}{2}+\beta\right)-A_{2}\left(\frac{\gamma}{2}-\beta\right)=A_{2}\left(\frac{\gamma}{2}+\beta\right)-A_{2}\left(\frac{\gamma}{2}-\beta\right)=2 A_{2} \beta=v_{0}$, and thereby solve for A_{2}, but we'll see that this isn't even necessary for this problem.

Our particular solution $x(t)=A_{1}\left[e^{-\left(\frac{\gamma}{2}+\beta\right) t}-e^{-\left(\frac{\gamma}{2}-\beta\right) t}\right]=A_{1} e^{-\frac{\gamma}{2} t}\left[e^{-\beta t}-e^{+\beta t}\right]$. Clearly,
this is zero at $\mathrm{t}=0$, as constructed. Is $x(\mathrm{t})=0$ anywhere else? The prefactor $e^{-\frac{\gamma}{2} t}$ is of course always positive (except at $\mathrm{t} \rightarrow \infty$), so for $x(\mathrm{t})$ to be zero, we need $e^{-\beta t}-e^{+\beta t}=0$, i.e. $e^{-\beta t}=e^{+\beta t}$. Taking logarithms, $-\beta t=\beta t$, which is satisfied only at $\mathrm{t}=0$. So no, $\boldsymbol{x}(\mathrm{t})$ is never zero except at $\mathrm{t}=\mathbf{0}$, therefore the door never hits Mr. K.
4. Driven oscillator response.

$$
\begin{aligned}
& m \ddot{x}+b \dot{x}+k x=F_{0} \cos \omega t \\
& \ddot{x}+\frac{b}{m} \dot{x}+\frac{k}{m} x=\frac{F_{0}}{m} \cos \omega t \\
& \ddot{x}+\gamma \dot{x}+\omega_{0}^{2} x=F_{0} / m \cos \omega t
\end{aligned}
$$

then $A(w)=\frac{F_{0} / m}{\left.\left[\omega_{0}^{2}-w^{2}\right)^{2}+(\gamma w)^{2}\right]^{1 / 2}}$
(a) at $\omega=\omega_{0}$

$$
\begin{aligned}
A(w) & =\frac{F_{0} / m}{r^{2} w^{2}} \\
\therefore \frac{d A(w)}{d w} & =-2 \frac{F_{0} / m}{r^{2} w^{3}}<0
\end{aligned}
$$

\therefore at $\omega=\omega_{0}, A(w)$ is decreasing function.

$$
\left.\begin{array}{rl}
(c) ~ & \begin{array}{rl}
\tan \delta(\omega) & =\frac{\gamma \omega}{\omega_{0}^{2}-\omega^{2}}
\end{array}=\frac{\omega \omega_{0}}{Q\left(\omega_{0}^{2}-\omega^{2}\right)} \\
\begin{array}{rl}
\therefore \frac{d \tan \delta(\omega)}{d \omega} & =\frac{d \tan \delta}{d \delta} \frac{d \delta}{d \omega} \\
& =\frac{1}{\cos ^{2} \delta} \frac{d \delta}{d \omega}
\end{array}=\frac{d}{d \omega}\left(\frac{\omega \omega_{0}}{Q\left(\omega_{0}^{2}-\omega^{2}\right)}\right) \\
& =\frac{\omega_{0} Q\left(\omega_{0}^{2}-\omega^{2}\right)-\omega \omega_{0} Q(-2 \omega)}{Q^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}} \\
& =\frac{\omega_{0}\left(\omega_{0}^{2}+\omega^{2}\right)}{Q\left(\omega_{0}^{2}-\omega^{2}\right)^{2}} \\
\therefore \frac{d \delta}{d \omega} & =\frac{\omega_{0}\left(\omega_{0}^{2}+\omega^{2}\right)}{Q\left(\omega_{0}^{2}-\omega^{2}\right)^{2}} \cos ^{2} \delta
\end{array} \dot{\gamma} \omega_{0}^{\omega_{0}^{2}-\omega^{2}}\right)
$$

$$
\therefore \frac{d \delta}{d w}=\frac{\omega_{0}\left(w_{0}^{2}+w^{2}\right)}{Q\left(\omega_{0}^{2}-w^{2}\right)^{2}} \cdot \frac{\left(\omega_{0}^{2}-w^{2}\right)^{2}}{\left(\omega_{0}^{2}-w^{2}\right)^{2}+r^{2} w^{2}}=\frac{\omega_{0}\left(\omega_{0}^{2}+w^{2}\right)}{Q\left[\left(\omega_{0}^{2}-w^{2}\right)^{2}+r^{2} w^{2}\right]}
$$

at $\omega=\omega_{0}$

$$
\frac{d \delta}{d \omega}=\frac{\omega_{0} \cdot 2 \omega_{0}^{2}}{Q \gamma^{2} w_{0}^{2}}=\frac{2 w_{0}}{Q \cdot \frac{w_{0}^{2}}{Q^{2}}}=\frac{2 Q}{\omega_{0}}
$$

\therefore at $\omega=\omega_{0}, \frac{d \delta}{d \omega}$ is an increasing function of Q
(5)

French 4-14.
(a) $\bar{P}(\omega)=\frac{F_{0}^{2} \omega_{0}}{2 k Q} \frac{1}{\left(\frac{w_{0}}{\omega}-\frac{\omega}{w_{0}}\right)^{2}+\frac{1}{Q^{2}}}$
when $w=0.98 \omega_{0}$

$$
\bar{P}\left(0.98 \omega_{0}\right)=\frac{F_{0}^{2} \omega_{0}}{2 k Q} \frac{1}{\left(\frac{1}{0.98}-0.98\right)^{2}+\frac{1}{Q^{2}}}=\frac{1}{2} \frac{F_{0}^{2} \omega_{0}}{2 k Q} \cdot \frac{1}{\frac{1}{Q^{2}}}
$$

that is $\left(\frac{1}{0.98}-0.98\right)^{2}+\frac{1}{Q^{2}}=\frac{2}{Q^{2}}$.

$$
\begin{aligned}
\therefore Q^{2} & =\frac{1}{\left(\frac{1}{0.98}-0.98\right)^{2}} \\
Q & =\frac{1}{\frac{1}{0.98}-0.98} \doteq 24.75 \doteq 25
\end{aligned}
$$

(b) $Q=\frac{w_{\gamma}}{\gamma}$

$$
\therefore \nu=\frac{\omega_{0}}{Q}=\frac{\omega_{0}}{25}=0.04 \omega_{0}
$$

(c) $\left.\frac{\Delta E}{E}=\left|-e^{-\gamma T}=H\right|-Y T\right)=Y T=0.04 \omega_{0} \cdot \frac{2 \pi}{\omega_{0}}=0.08 \pi \quad(Q \gg 1)$

