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Physics 351 – Vibrations and Waves 

 
Problem Set 6 

 
 
Due date:  Friday, Nov. 16, 4pm. 
Reading:  French Chapter 5. 
 
A note:  This problem set is shorter than it seems.  Problems 2-6 are very similar to one another, which should 
cement your understanding of coupled oscillators and should also be useful in analyzing the coupled oscillator systems 
that you build.  Problem 1 is not related to coupled oscillators and could have been assigned weeks ago. 
 
 
(1, 6 pts.)  Phase space.  It’s often informative to 
consider the trajectory of a system in “phase 
space,” in which particular physical quantities form 
the coordinate axes.  One common set of 
quantities is position and velocity.  For example: let’s 
imagine some system in which the position is 
given by ( ) /x t a t= , and the velocity is given by 

2( ) /v t x a t= = − , where t is time and a is some 
constant.  Therefore 2 /v ax= − – i.e. ( )v x  is a 
quadratic function of x.  At time t=0, both v and x 
are zero, so our parabola “starts” at the origin of 
our phase space plot.  The plot looks like: 

 

(a, 3 pts.) Consider an undamped simple harmonic oscillator.  Prove that the phase space plot (with 
axes x and x ) is an ellipse.  (Remind yourself of the equation characterizing an ellipse.) 

(b, 2 pts.)  Draw the phase space plot for an undamped oscillator with the initial conditions 
0( 0)tx x= = , ( 0) 0tv = = .  Indicate the t=0 point on the plot. 

(b, 1 pt.)  What would the phase space plot of a damped oscillator look like?  Draw it, qualitatively – 
you don’t have to do any math.  Indicate the “t=∞” point on the plot. 

 
 
 
(2, 12 pts)  Two coupled masses.  Consider two objects (A and B) of 
equal mass m connected to each other and to rigid walls by identical 
springs of spring constant k (see Figure).  Neglect damping, and 
assume all motion is in a horizontal plane, so gravity is irrelevant.  
 (a, 2 pts.)  If one of the masses is clamped in place at its equilibrium position (i.e. x = 0 at all times), 

what is the angular frequency of oscillation of the other mass?  (Call this sω ).  As usual, 
answering this involves writing the forces acting on the free mass, applying Newton’s law to 
form a differential equation, and determining the oscillation frequency that satisfies the 
differential equation. 



(b, 3 pts.)  Now considering the unclamped system, defining ω0
2 = k/m, show that the system is 

described by two coupled differential equations: 
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(c, 4 pts.)  Find the normal mode frequencies.  As we did in class for the coupled pendulums, write 
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and substitute into (i) and (ii).  You’ll obtain two equations involving the frequencies and 
amplitudes.  Write this pair of equations in matrix form, as 
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where W is a 2×2 matrix involving the frequencies.  See the attached notes on matrix algebra if 
you are unfamiliar with matrix notation.  A fundamental theorem of linear algebra states that this 
matrix equation has a non-trivial solution (i.e. a solution other than DA = DB = 0) if and only if 
the determinant of W is zero.  See the attached notes on matrix algebra if you are unfamiliar with 
determinants.  Find the values of ω for which det[W]=0.  There will be two (ω1 and ω2).  These 
are the normal mode frequencies.  (Using the matrix determinant to determine ω is simpler than 
the approach taken in the text, as you may see from the subsequent problems.) 

(d, 3 pts.)  Find the normal mode amplitudes.  For each normal mode frequency, substitute that ω 
in to one of Eqns. (i) or (ii) – it doesn’t matter which, a consequence of the det[W]=0 condition 
– and determine the relation between DA and DB. 

(e, 2 pts.)  Write the general solution for xA(t) and xB(t).  You may wish to call the amplitudes 
corresponding to the first mode “C” and the second mode “D,”as was done in the text for the 
two coupled pendulums (p. 125-126).  Unlike the text’s eq. 5-6, don’t neglect the phase factors 
(i.e. φ, above). 

 
 
(3, 8 pts)  Two coupled masses with non-identical springs.  
Two identical masses (m), called A and B, are connected to rigid 
walls by springs of spring constant k, and to each other by a 
spring of spring constant kc (see Figure). 

(a, 2 pts.)  If one of the masses is clamped in place at its equilibrium position (i.e. x = 0 at all times), 
what is the angular frequency of oscillation of the other mass?  (Call this sω ). 

(b, 4 pts.)  Find the normal mode frequencies (for the unclamped system).  Use the same approach 
as in Problem 2. 

(c, 2 pts.)  For small kc (i.e. << k), show that the normal mode frequencies are given by the relation 
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, where ω0
2 = k/m. 

 
 
 



(4, 8 pts)  Two objects with an unknown coupling.  Consider two objects of mass m that, 
uncoupled, each exhibit oscillations with a period T0.   (Note: from this statement alone you should 
be able to write a differential equation of motion for each uncoupled oscillator, and state what the 
restoring “spring-like” force on each object is.)  When coupled, object A feels an additional force 
equal to 2 Bk x− , where k2 is some unknown coupling strength, and similarly, object B feels a force 

2 Ak x− .  The coupled system’s two normal mode periods are measured to be T1 (> T0) and T2 (< 
T0).  Determine the coupling strength k2 in terms of the measured quantities T0, T1, and T2. 
 
 
 
(5, 8 pts)  Three coupled masses with identical springs.  Three identical masses (m) are 
connected to rigid walls and to each other by springs of spring constant k (see Figure).  Determine 
the normal mode frequencies, using the approach of Problem 1. 

 
  
 
 
(6, 10 pts.)  The CO2 molecule (French 5-9).  A carbon dioxide 
molecule can be modeled as two oxygen atoms (identical masses m1 and m3 
in the figure) connected by identical springs of spring constant k to a 
carbon atom (of different mass, m2).  (The “springs,” by the way, are 
related to the shape of the interaction potentials, as we know from our 
evaluation of the form of any potential energy function near equlibrium.) 

 

(a, 8 pts.)  Consider only motions in which the masses oscillate along the line joining their centers 
(i.e. “stretching” modes, rather than “bending” modes).  Set up and solve the differential 
equations to determine the normal mode frequencies1.  I recommend using the determinant 
method of Problem 1.  Hint: The equation for m3 is ( )2333 xxkxm −−= . 

(b, 2 pt.)  Noting that the mass of an oxygen atom is 16 a.m.u. and the mass of a carbon atom is 12 
a.m.u., calculate the ratio of the normal mode frequencies.  The stretching mode frequencies of 
CO2 can easily be measured (e.g. by optical spectroscopy), and are found to be 40.0 and 70.5 
THz (1 THz = 1012 Hz).  Compare the ratio of these to the value you calculated.  (Though 
molecules are governed by quantum, rather than classical, mechanics, classical calculations are 
often quite good!) 

 

                                                 
1 You’ll find that there are only two normal mode frequencies, thought there are three masses.  Why?  Strictly speaking, 
the number of normal modes is not equal to N, the number of particles, but to the number of “degrees of freedom” of 
the system.  In the other “three mass + springs” systems we considered, there are three degrees of freedom, the 
positions of each mass.  Here, there is an additional constraint due to the absence of confining walls, not explicitly stated 
but nonetheless a consequence of Newton’s laws: the center of mass can’t move, since there is no external force acting 
on the system.  The number of degrees of freedom for 1D motion is N minus the number of constraints, i.e. 2. 


