
Prof. Raghuveer Parthasarathy 
University of Oregon; Fall 2007 
Physics 351 – Vibrations and 
Waves 

 
Problem Set 6: SOLUTIONS 

 
(1)  Phase Space.   
 
Two methods: 
(i) We know that for a simple harmonic oscillator, ( ) cos( )x t A tω φ= −  and sin( )x A tω ω φ= − − .  

 The equation for an ellipse is 
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+ = , where a and b are the semimajor and semiminor axes.  

(Recall that for a circle, 
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+ = ) where a is the radius of the circle.)  Recall the simple trigonometric 

identity related to the unit circle, 2 2cos ( ) sin ( ) 1y y+ =   for any y.  We can write this trig identity in terms 
of our ( )x t  and ( )x t :  
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which is an ellipse with a=A and b = Aω. 
 
(ii)  We know the equations that describe the position and velocity of an undamped harmonic oscillator 
as a function of time.  We want to solve one of the equations for time and plug it into the other to get 
position and velocity in the same equation.  Then we'll rearrange the equation to (hopefully) look like an 
ellipse.  First we solve ( )x t  (see above) for a harmonic oscillator for time. 
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 Now we plug this result into the velocity equation. 
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which results in an ellipse. 
 



(b)  For initial conditions 0( 0)tx x= = , ( 0) 0tv = = , 0( ) cos( )x t x tω=  and 0 sin( )x x tω ω= − , so the 

particular ellipse: 
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= + .  This is plotted below: 

 
(c)  For a damped oscillator, x and x decrease, both eventually becoming zero.  This is plotted below: 

 
 
 
 

 

(c)  Assume normal mode solutions:  
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.  Differentiating and “plugging in” to our 

differential equations gives 
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The non-trivial solution comes from setting the determinant of the 2x2 matrix equal to zero: 
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So 
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(d)  Taking 0
k
m

ω ω= = and plugging it into the first row of our matrix equation gives 
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Next taking 
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ω =  and doing similar algebra: 
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(e)  We have two normal mode frequencies that yield the following general solution: 
 

 



 
(3)  Two coupled masses with non-identical springs.   

 

 



(You could also Taylor expand the “original” 
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expression and keep the lowest-order term 

in r – you’d get the same answer.) 
 
 
(4)  Two objects with an unknown coupling. 

 



(5) Three coupled masses with identical springs.

Following the lead of problem 6.2 we write down the coupled equations of motion for
this system:

0 = ẍA + 2ω2
0xA − ω2

0xB (1)
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0xC (2)
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where ω0 =
√

k
m . We again assume solutions of the form xi(t) = Ci cos(ωt + α) and plug

them into the above equations:
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Putting this into matrix form we have: 2ω2
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Now we proceed as before and recognize that solving the determinant of the above matrix
set equal to zero for ω will give us the normal mode frequencies. This gives us
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One could multiply out all the terms and simplify, getting:

−ω6 + 6ω4ω2
0 − 10ω2ω2

0 + 4ω6
0 = 0.

But it is easier to first look at our expression, and see what we can factor out. Notice
that there’s a (2ω2

0 − ω2) in common to both terms. Therefore
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or ω =
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2ω0, is one solution, i.e. one normal mode frequency. (The negative root is
physically identical, and so irrelevant.) For ω 6=
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