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Physics 351 — Vibrations and
Waves

Problem Set 6: SOLUTIONS

(1) Phase Space.

Two methods:
@) We know that for a simple harmonic oscillator, X(t) = AcoS(awt —¢@) and X =—-wASsIn(wt —¢).
2 2
The equation for an ellipse is —+ b—2 =1, where @ and b are the semimajor and semiminor axes.
a
' X2y
(Recall that for a circle, —+-—
a

> =1) whete a is the radius of the circle.) Recall the simple trigonomettic

identity related to the unit circle, cos’ (y)+ sin’ (y)=1 foranyy. We can write this trig identity in terms

of our X(t) and X(t):
2]
A -Aw

which is an ellipse with «=4 and b = Aw.

(ii) We know the equations that describe the position and velocity of an undamped harmonic oscillator
as a function of time. We want to solve one of the equations for time and plug it into the other to get
position and velocity in the same equation. Then we'll rearrange the equation to (hopefully) look like an
ellipse. First we solve X(t) (see above) for a harmonic oscillator for time.

t(x) = %{arccos (%) + 4

Now we plug this result into the velocity equation.

X=—wAsin(ot - ¢) = —wASin(wl{arccos (ij + 4 —9)
@ A
= —a)Asin(arccos(%) — ¢+ ¢) = —wAsin(arccos [%j);

Use trig identity (or draw triangles), sin(arccos(x)) =v/1— x*

2
% = —wA, /1—%

)2
X
Therefore %2 1——2, =% >
oA A oA A
which results in an ellipse.



(b) For initial conditions X(t =0) =X, V(t=0)=0, X(t) = X, cos(at) and X =—-wX, sin(at), so the

.2 2
X
particular ellipse: 1= 2—)(2 +— . This is plotted below:
0o "o

(c) For a damped oscillator, X and X decrease, both eventually becoming zero. This is plotted below:
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I Problem 2: Two coupled masses
a) If xpis clamped then we have the following equation of motion:
H

. e bl 2
F=miy=-2kx, or m¥; +w, x4 = 0 where w,;~ = — .
1

b) The two differential equations describing this system are:
& " 2k
miy=—kxq+hk(xg—x4) or ¥4+ 2k X4 — LS xg=0
m m
. . 2k k
mig=—kxg—kixg—x4) or g+ S Xp— = Xg = 0.

Defining w,? =% and taking w,> from part a) we have:
m

g+ w xg—wetxp=0
¥p + wt xp—wox, = 0.
X, = D, cos(at —¢)

. Differentiating and “plugging in” to our
Xz = Dy cos(awt — @) 8 plesne

(c) Assume normal mode solutions:
differential equations gives
~’D, +&’D, —w?D, =0
~@’Dy +w’Dy —w}D, =0
which leads to the matrix equation
~° + ! -} (DAJ_O
~?  —o+a?)\Dy)

The non-trivial solution comes from setting the determinant of the 2x2 matrix equal to zero:



_w2+a)52 _wg 2 2\2 2\2
) ) ) :(—a) +a)5) —(—a)o) =0
-, -0 + o,

3k k
w=— 0 —
So m m

[k
(d) Taking o = H = @, and plugging it into the first row of our matrix equation gives
~@!D, + @D, —w,’Dy =0
(—a)o?‘ +a)52) D, —@,°Dy =0

D, —w,°Dy =0 using the o expressions
D,=D;

/3k
Next taking @ = ,/— and doing similar algebra:
m

k k
“p,-<D,=0
m * m °

D,=-D;

(e) We have two normal mode frequencies that yield the following general solution:

We have two normal mode frequencies that yield to following general solu-
tion:

xq(0) = CCOS(\/E.*%{}') + Dcos( % t+ ﬁ)

xg(t) = Ccos(\/g t +af] - Dcos(\/%r + ;S’).



(3) Two coupled masses with non-identical springs.

) If B is clamped in place then we have an equation of motion similar to part a) of problem 2

F=mi;=-kxs—k.xy or ¥+ Lthe) x4 = ¥4+ wtxg =0 where w,? =
"

(k +ke)
F m '

b) We have two equations of motion one for each mass:
. . ke
miyg=—kxy+k(xg—x4) or ¥4+w?xy—w?xp=0 where w.> = -t
mip=—kxg—ke(xg—x4) Or ¥g+wxg—we2xy4=0.

Let's assume the solutions:

xq4 = Cycos(wt + @)

xp = Cpcos(wt + a).
Plugging these in gives us:
P Cy+wl Cy—wlCr=0
W Cp+wl Cp—w2Cy=0.

And the matrix equation:
[—w2+w52 —w,? ](CA] 0
—w(.z —w? + wsl Cp .
Once again we take the determinant of the 2x2 matrix and set it equal to zero to find the normal mode frequencies w.

2 2 2
—W” + Wy —We” 2 242 4
=(~w" + W) —w" =0.

2 el 2
—w,” —W* + Wy

Solving this for w gives us:

k+2 ke or k.

2 2 2
W =Wt w = .
m m

c) As the hint suggests let's begin by factoring out an

Wy:
.32 ke k+ko+k, | +rtr ke
=w, [1x(=) = (=) mw, [ —C = —= W =< << 1. Noww
w=w, |1 (w.,- ) Wy \/ 1 ( k+kc) W \/ Tk, Wy . here r . 1. No e need to Taylor

expand the square root term to extract the behavior of the complicated term for lowest order in r. Evaluating the plus sign

first and keeping the lowest order r terms we have:

,‘ 1 +r+r 1 r
1+r 2

Similarly for the minus sign we have:

,‘M ~1 =L
1+r 2

Putting these two results together we have:

W = Wy A/ ];';: zws(l + %) = w_.,.(l + %)



1+r=+r

(You could also Taylor expand the “original” @ = @ Tor

expression and keep the lowest-order term

in r —you’d get the same answer.)

(4) Two objects with an unknown coupling.
We start this problem by recognizing that the uncoupled equations of motion are:
miy=—kxy or ¥4+wyixs=0
2

2

£ - 2 .. 5 27 \2

mip=—kxp or ¥g+ wy~ xg =0 where wy = T—” giving us k = m wy* :m(T—”] .
0 0

We are told how the coupling changes each equation of motion (adding a —k, x; force term). Taking into account the
coupling we now have:

X+ woPxg—wy’xp=0

" 2 2 ) k
¥p +wo xp — wr* x4 =0 where wsy* = ﬁ

Now we proceed as we did in the previous two problems and assume the following solutions:
x4 =Cycos(wt+a)

xp = Cpgcos(wt + a).

Substituting these solutions into our differential equations gives us:

P Cy+w Cy—wr? Cp=0

—w? Cg + m02 Cg —(.d32 C,I =0.

Taking this to matrix form we have:

[wg3—w3 —wr? ][CA) i
—w?  wy?-w?*)\Cp '

Following our tried and true strategy we take the determinant of the 2x2 matrix and set it equal to zero to find the normal
mode frequencies.

F 2
L | = W? = w?) —wy? =0.

2 2 2
wy” =W —wr”
el 2

—wr” Wyt —w”

Solving for w yields:

2 2 2 k+k
W = wy’ £ wy? = —=,

m
However, what we're after is w» so we want:

Wyt =w? - w()2 Orwoz - w?.

Now recall the period of oscillations for the coupled system are 7, > Ty and 7> < Ty. So for T} we have wy > w which
allows us to solve for w,:

2 2 2 [a-\2
w22=w02_w2:(2f_”} —(i—”) and kgzmwgzzm(z—”) —(i) .
0 |

Similarly, for T, < Ty we have w > wy giving us:

2 2 2 27 \? 27 \? 2 27 \? 27 \2
W™ =W — Wy =(—} —(—) and k» = mw, =m(—) —(‘—)
) Ty ) 0



(5) Three coupled masses with identical springs.

Following the lead of problem 6.2 we write down the coupled equations of motion for
this system:

= i+ 2wira —wirp (1)
= ip+2wirp—wira —wize (2)
0 = ic+2wire —wirg, (3)

where wy = 1/ £. We again assume solutions of the form z;(t) = C; cos(wt + a) and plug
them into the above equations:

0 = —w20A+2w§CA—w§CB (4)
0 = —w’Cp+2wiCp —wiCs—wiCo (5)
0 = —w?Co+2wiCe —wiCp. (6)

Putting this into matrix form we have:

2 2 2
2wi —w —w; 0 Ca
—w? 203 — w? —w? Cg | =0
0 —w? 2w — w? Cc

Now we proceed as before and recognize that solving the determinant of the above matrix
set equal to zero for w will give us the normal mode frequencies. This gives us

(2w — w?) [(2w —w?)? = wi] — (—w)) [~wi(2w) —w?)] =0

One could multiply out all the terms and simplify, getting:

—w0 4 6wlw? — 10w?w? + 4w = 0.

But it is easier to first look at our expression, and see what we can factor out. Notice
that there’s a (2w? — w?) in common to both terms. Therefore

2wi — w? =0,

or w = /2wy, is one solution, i.e. one normal mode frequency. (The negative root is
physically identical, and so irrelevant.) For w # v/2wp, we can divide through by 2w2 — w?,
getting:
(2wE —w?)? —wi —wi =0

for the other normal mode frequencies, which gives
203 —w? = iﬁw%,

or w? = (2+£V2)wd.
The three normal mode frequencies, therefore, are

w:\/iwo,wo\/Q—\/ﬁ,wo\/Q—l—\/i
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