
Physics 351, Fall 2007, Prof. Parthasarathy

Problem Set 7 Solutions
1. CO2:

(a) This problem requires the same treatment as PS6 no. 2 but with a different set
of differential equations. The forces acting on masses 1, 2, and 3 are:

F1 = −k(x1 − x2) (1)
F2 = −k(x2 − x1)− k(x2 − x3) (2)
F3 = −k(x3 − x2), (3)

and these equal mẍ1,2,3 as usual. The coupled equations of motion are then:

0 = ẍ1 + ω2
1x1 − ω2

1x2 (4)
0 = ẍ2 + 2ω2

2x2 − ω2
2x1 − ω2

2x3 (5)
0 = ẍ3 + ω2

3x3 − ω2
3x2, (6)

where ωi =
√

k
mi

. Assuming solutions of the form xi(t) = Ci cos(ωt + α) and
plugging them into the above equations:

0 = −ω2C1 + ω2
1C1 − ω2

1C2 (7)
0 = −ω2C2 + 2ω2

2C2 − ω2
2C1 − ω2

2C3 (8)
0 = −ω2C3 + ω2

3C3 − ω2
3C2. (9)

Which then gives us the following matrix equation: ω2
1 − ω2 −ω2

1 0
−ω2

2 2ω2
2 − ω2 −ω2

2

0 −ω2
3 ω2

3 − ω2

  C1

C2

C3

 = 0.

Taking the determinant of the matrix and setting equal to zero gives us:

(ω2
1 − ω2)

[
(2ω2

2 − ω2)(ω2
3 − ω2)− ω2

2ω2
3

]
+ ω2

1

[
−ω2

2(ω2
3 − ω2)

]
= 0.

Recall that m1 = m3 so ω1 = ω3 which we’ll call ω13. Making this substitution
allow us to factor out (ω2

13 − ω2):

(ω2
13 − ω2)

[
−ω2ω2

13 − 2ω2ω2
2 + ω4

]
= 0.

There are two routes to a solution – either of these factors can be zero. The
left is especially easy to examine. We see that (ω2

13 − ω2) = 0, i.e. ω = ω13, is
one normal mode solution; factoring this out we have

0 =
[
−ω2ω2

13 − 2ω2ω2
2 + ω4

]
(10)

= ω2
[
ω2 − (ω2

13 + 2ω2
2)

]
(11)
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giving us ω = 0 (an uninteresting, non-oscillatory, stationary solution) or ω2 =
(ω2

13 + 2ω2
2).

The two normal mode frequencies are therefore:

ω = ω13 =
√

k

m1
and

√
ω2

13 + 2ω2
2 =

√
k

m1
+

2k

m2

(b) The ratio of the frequencies is:

R =

√√√√ k
m1

+ 2k
m2

k
m1

=
√

1 + 2
m1

m2
.

Plugging in the given values of m1 = 16,m2 = 12 we have,

R = 1.91.

Observed values of oscillation frequencies give us:

R =
70.5
40.0

= 1.76.

Pretty close.

2. Hanging springs: Defining xA and xB as the displacements from equilibrium of each
of the two masses, the forces acting on masses A and B are:

A : −kxA + k(xB − xA) (12)
B : −k(xB − xA) (13)

As usual, it’s convenient to derive this by considering each spring separately. (Note
that this has the correct behavior for increasing xA or xB .) Therefore our differential
equations of motion are, setting the forces equal to mẍ and defining ω2

0 = k/m,

A : ẍA + 2ω2
0xA − ω2

0xB = 0 (14)
B : ẍB + ω2

0xB − ω2
0xA = 0 (15)

As usual (see PS6), we look for a normal mode solution xA = CA cos(ωt), xB =
CB cos(ωt):

A : (−ω2 + 2ω2
0)CA − ω2

0CB = 0 (16)
B : (−ω2 + ω2

0)CB − ω2
0CA = 0 (17)

which in matrix form is(
(−ω2 + 2ω2

0) −ω2
0

−ω2
0 (−ω2 + ω2

0)

) (
CA

CB

)
= 0.
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Taking the determinant of the matrix and setting it equal to zero to find non-trivial
solutions gives:

(−ω2 + 2ω2
0)(−ω2 + ω2

0)−(ω2
0)2 = 0 (18)

(−ω2 + 2ω2
0) = ±ω2

0 (19)
ω4 − 3ω2

0ω2 + ω4
0 = 0 (20)

We solve for ω2 using the quadratic formula, from which:

ω2 =
3ω2

0 ±
√

9ω4
0 − 4ω4

0

2
(21)

ω2 = ω2
0

1
2
(3±

√
5) (22)

=
k

2m
(3±

√
5) (23)

These are the two normal mode frequencies. (You can verify that their product is
k/m, as promised.)

3. N coupled masses:

(a) Let’s write down the sum of all forces on mass p.

mξ̈p = −k(ξp − ξp−1) + k(ξp+1 − ξp)

which is just like the equation of motion for the middle mass of the previous
problem. This should make sense since the two situations (regarding the middle
mass) are identical. Now let ω2

0 = k
m . Then,

ξ̈p + 2ω2
0ξp − ω2

0(ξp−1 + ξp+1 = 0.

(b) The normal mode frequencies that correspond to the above equation are:

ωn = 2ω0 sin
(

nπ

2(N + 1)

)
.

Let’s consider n << N . Then, nπ
2(N+1) is a small number and we can make a

small angle approximation.

ωn ≈ 2ω0

(
nπ

2(N + 1)

)
.

Recall that in the problem statement we made the assertion that L = (N + 1)`
that relates the total length of the coupled mass chain to the length of one

spring. Using this expression in the form (N + 1) = L
` and ω0 =

√
k
m we have,

ωn ≈
√

k`2

m

(nπ

L

)
.
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4. Crystal vibrations:

(a) The definition of density is total mass divided by total volume. The total mass
of our lattice is M = m(NxNyNz). The total volume of our lattice is,

V = LxLyLz = `3(Nx − 1)(Ny − 1)(Nz − 1).

But we’re looking at large Ni so Ni − 1 ≈ Ni. Putting this together we have,

ρ =
M

V
=

m

`3

(b) When we act on the end mass with a force F the mass will be displaced a
distance ξ. The spring will then be compressed by the same amount ξ. The
spring has constant k so the restoring force felt by the next mass in the chain is
kξ. But as we initially stated the original force F corresponds to a compression
ξ for spring constant k. So the force felt by the next mass is indeed F . This
force will result in another displacement ξ which compresses the next spring in
the chain by ξ and so on. So for any given mass, the finial force F on the end
mass will cause any mass in the chain to feel a force F .

(c) As we stated before Li = (Ni − 1)`. Now for a given force F acting on the
end mass of a chain we have showed in the previous part that any mass in the
chain feels the same force F . So each mass in the chain will be displaced by an
amount ξ = F

k . The total displacement is then ∆L = (Ni − 1)ξ. Putting this
together we have,

∆L

L
=

(Ni − 1)ξ
(Ni − 1)`

=
ξ

`
.

(d) Young’s modulus is defined as Y = − FL
A∆L . Drawing from our results in parts

(a), (b), and (c) we can talk about Young’s modulus the small unit cell consist-
ing of one mass. Then,

Y = −F`

Aξ
.

Recall that F
ξ = −k,

Y =
k`

A
.

Since we’re working on the scale of a unit cell, we know A = `2. So, Y = k
` .

(e) From part (b),

ωn ≈
√

k`2

m

(nπ

L

)
.

Substitute, k
` = Y and m

`3 = ρ.

ωn ≈
√

k`3

m`

(nπ

L

)
=

√
Y

ρ

(nπ

L

)
.
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(f) The units of
√

Y
ρ are,


√

Y

ρ
=

√√√√(
kgm2

m3s2

)
kg
m3

=
m

s

 .

Similarly, √
τ

µ
=

√√√√ kgm
s2

kg
m

=
m

s


(g) The lowest frequency normal mode has n = 1. Recall that Tn = 2π

ωn
so we have,

ωn =≈ 2π

T1
=

√
Y

ρ

(nπ

L

)

T1 = 2L
√

ρ

Y
.

For our piece of quartz, L = 0.01 m, ρ = 2.65× 103 kg/m3, and Y = 85 ×109

N/m, so T1 = 1.1× 10−5 seconds, or about 10 µ s.

(h) For our piece of jello, L = 0.01 m, ρ = 1 × 103 kg/m3, and Y = 100 N/m, so
T1 = 0.06 seconds. (You can watch jello jiggle – it’s slow.)

5. Banjo Strings:

We know that the fundamental mode of a string has the following relation

ω1 = 2πf1 =
π

L

√
τ

µ
(24)

, λ = 2L where L is the length of the string, τ is the tension, and µ is the mass
density. Rewriting:

f1 =
1

2L

√
τ

µ
(25)

or
µ = τ/(2f1L)2. (26)

(a) Plugging in the numbers, we find that the mass densities are µ = (3.01, 3.70,
6.30, 14.90, 3.01) ×10−4 kg/m

(b) Using the 3.01 ×10−4 kg/m material for all the strings, we invert the above
equation to obtain the “new” tension values: τ = (2fL)2µ = 48.64 , 34.57 , 21.77 ,
12.24 , and 48.69 Newtons.
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Figure 1: Various modes of a guitar string. Notice that the odd modes all have a maximum
at the center of the string and the even mode all have a node at the center. Image obtained
from Hyperphysics (http://hyperphysics.phy-astr.gsu.edu).

6. Plucking a String:

When plucking a guitar string at the center we create an initial displacement that
is maximal at the center of the string. All of the odd n modes have maxima at the
center of the string. The even modes, on the other hand, have nodes (zeros) at the
center of the string. Therefore the even modes cannot contribute to our imposed
string deformation; conversely, our deformation cannot excite the even modes, since
it doesn’t “overlap” with their shape.
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