
Physics 351: Problem Set 8 Solutions

1. Normal Modes of a Gas Filled Pipe:

(a) We are given Young’s modulus as:

Y = − F/A

∆`/`
.

We want to relate this quantity to the pressure and volume of the gas cylinder.
We are given a way to relate force and area to pressure:

∆p =
F

A
.

Moreover, since the cross-sectional area of the cylinder never changes during
the compression we can relate the change in volume of the gas to the change in
piston height,

∆`

`
=

∆`A

`A
=

∆V

V
.

Pulling this all together we have:

Y = − F/A

∆`/`
= −V

∆p

∆V
.

(b) The ∆p/∆V term measures how the pressure of the cylinder changes as a
function of volume change. But we know exactly what this change is since we
know the equation of state for this gas filled cylinder (p = C/V γ),

∆p

∆V
=

dp

dV
= −γ

C

V γ+1
= −γ

C

V V γ
= −γ

p

V
.

Plugging this in to our Young’s modulus gives us:

Y = −V
∆p

∆V
= −V

(
−γ

p

V

)
= −γp.

(c) From our “rule of thumb” we know that the speed of sound is v = 1
3 km / s, or

v = 333 m/s. Solving our result from (b) for γ,

γ = Y/p = ρv2/p. (1)

Plugging in numbers, γ = 1.3, which is closer to 7/5 = 1.4 than 5/3 = 1.67.
Therefore, it looks like air is mostly composed of diatomic molecules. (Which
it is – it’s overwhelminly N2 and O2).
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(d) First, we’ve assumed a solution to the wave equation of the form ξ(x, t) =
f(x) cos(ωt) so let’s plug it into the wave equation and see if that helps us
simplify the problem of finding normal mode frequencies.

δ2ξ

δx2
=

1
v2

δ2ξ

δt2

δ2f

δx2
cos(ωt) = −ω2

v2
f(x) cos(ωt)

δ2f

δx2
= −ω2

v2
f(x).

We have turned our coupled differential equation with two variables into a
differential equation involving only position. Moreover, we should recognize this
differential equation as our familiar harmonic oscillator, which has solutions of
the form A sin((ω/v)x + α). Now let’s turn to the boundary condition ξ(x =
0) = 0.

ξ(x = 0) = f(0) cos(ωt) = 0.

But this condition holds true for all time so,

0 = f(0) = A sin((ω/v)(0) + α) = A sin(α).

We ignore the trivial solution A = 0 and instead turn to sin(α) = 0. From here
we now pick α = 0. Then next boundary condition yields,

dξ(x = L)
dx

=
df(x = L)

dx
cos(ωt) = 0.

This once again is true for all time so,

0 =
df(x = L)

dx
= (ω/v)A cos(ωsL).

Since A and (ω/v) cannot be zero we know cos((ω/v)L) = 0 which gives us
(ω/v)L = an odd multiple of π/2, i.e. = (n− 1/2)π for n = 1, 2, 3, . . .. Solving
for ω, plugging in our above expression for v from part (b) gives us,

ω =
(n− 1

2 )πv

L
=

(n− 1
2 )π

L

√
γp

ρ
.

(e) Using our STP values for air from part (b) and L = 20cm we can use

f = ω/(2π) =
(n− 1

2 )
2L

√
γp

ρ

to obtain:

f1 = 427 Hz
f2 = 1281 Hz
f3 = 2135 Hz
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2. Energies of a Vibrating String, revisited:
Given:

yn = An sin
(nπx

L

)
cos(ωnt− φn), ; ωn =

nπ

L

√
T

µ
. (2)

The speed:
ẏn = −ωnAn sin

(nπx

L

)
sin(ωnt− φn), (3)

which is zero at t∗ given by ωnt∗ − φn = 0 (or any integer multiple of π).

(a) As noted in the assignment, the force on the string is given by

dF = τdx
∂2y

∂x2
, (4)

and so
dF = −τdxAn

(nπ

L

)2

sin
(nπx

L

)
cos(ωnt− φn), (5)

which at t∗ is

dF = −τdxAn

(nπ

L

)2

sin
(nπx

L

)
= −τdx

(nπ

L

)2

y(x, t∗) (6)

This looks like a spring (F = −ky) with spring constant “k” given by

k = −τdx
(nπ

L

)2

(7)

Therefore the energy associated with this piece of string is “ 1
2ky2”,

dU = −1
2
τdx

(nπ

L

)2

[y(x, t∗)]2 (8)

which we can integrate over x to get the total potential energy , U .

(b) Integrating, as noted above, U =
∫

dU , using the integral of sin2 that we’re
familiar with:

U =
∫ L

0

1
2
τ dx

(nπ

L

)2

A2
n sin2

(nπx

L

)
=

1
2
τ

(nπ

L

)2

A2
n

L

nπ

nπ

2
=

1
4

τ

L
n2π2A2

n,

This is the potential energy at time t∗ – therefore, it is the total energy at all times.
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3. Fourier Series:
The general form of the Fourier Series of a function y defined over x = 0 to L
is:

y(x) =
∞∑

n=1

Bn sin
(nπx

L

)
.

The coefficients that define the series are:

Bn =
2
L

∫ L

0

y(x) sin
(nπx

L

)
dx

(a) The parabolic function
y = C(x2 − xL). Let’s evaluate Bn (making use of the given integration for-
mula):

Bn =
2
L

∫ L

0

y(x) sin(
nπx

L
)dx (9)

=
2
L

∫ L

0

Cx2 sin(
nπx

L
)dx.− 2

L

∫ L

0

CLx sin(
nπx

L
)dx (10)

Defining u = nπx/L, so du = nπdx/L,

Bn =
2C

L

(
L

nπ

)3 ∫ nπ

0

u2 sin(u)du (11)

−2C

(
L

nπ

)2 ∫ nπ

0

u sin(u)du (12)

(13)

Bn =
2C

L

(
L

nπ

)3 [
−u2 cos(u)|nπ

0 + 2
∫ nπ

0

u cos(u)du

]
(14)

−2C

(
L

nπ

)2 [
−u cos(u)|nπ

0 +
∫ nπ

0

cos(u)du

]
(15)

(16)

Bn =
2C

L

(
L

nπ

)3

2
∫ nπ

0

u cos(u)du (17)

−2C

(
L

nπ

)2

[−nπ cos(nπ) + sin(nπ)− 0](18)

+
2C

L

(
L

nπ

)3

[−(nπ)2 cos(nπ)] (19)

Note that sin(nπ) = 0 (20)
(21)
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Bn =
4CL2

(nπ)3

∫ nπ

0

u cos(u)du (22)

+
2CL2

nπ
cos(nπ)− 2CL2

nπ
cos(nπ) (23)

Integrate by parts... (24)

Bn = −4CL2

(nπ)3
(1− cos(nπ)). (25)

Thinking about cosines, we see that:

Bn = −8CL2

(nπ)3
for odd n (26)

= 0 for even n. (27)

(By plotting y(x) sin(nπx/L), we could have realized ahead of time that all the
even Bn would integrate to zero.)

(b) The function is y = A sin( 7πx
L ). Thus

Bn =
2
L

∫ L

0

A sin(
7πx

L
) sin(

nπx

L
)dx

From the orthogonality of sine functions (recall the lecture on Fourier Series),∫ L

0

sin(
mπx

L
) sin(

nπx

L
)dx = L/2, if integer m = n (28)

0, otherwise, (29)

we know that all the Bn are zero except B7, which (think about the Fourier
Series itself) is simply B7 = A. (You can do the integral, if you want.) This
function is its own Fourier series expansion!

4. 2D Sheet:

(a) Unit analysis: [√
S

σ
=

√
N/m

kg/m2
=

√
kg/s2

kg/m2
=

√
m2

s2
=

m

s

]

5



(b) To test if our given h(x, y, t) is a solution we need only plug it into the differential
equation and show that our expression for the normal mode frequencies matches
the given expression. Let’s get the derivatives out of the way first,

δ2h

δx2
= −Cnm

(
nπ

Lx

)2

sin
(

nπ

Lx
x

)
sin

(
mπ

Ly
y

)
cos(ωnmt) = −

(
nπ

Lx

)2

h(x, y, t)

δ2h

δy2
= −Cnm

(
mπ

Ly

)2

sin
(

nπ

Lx
x

)
sin

(
mπ

Ly
y

)
cos(ωnmt) = −

(
mπ

Ly

)2

h(x, y, t)

δ2h

δt2
= −ω2

nm sin
(

nπ

Lx
x

)
sin

(
mπ

Ly
y

)
cos(ωnmt) = −ω2

nmh(x, y, t).

Plugging these derivatives into the wave equation gives us,

− 1
v2

ω2
nmh(x, y, t) = −

(
nπ

Lx

)2

h(x, y, t) +−
(

mπ

Ly

)2

h(x, y, t)

ω2
nm

v2
=

(
nπ

Lx

)2

+
(

mπ

Ly

)2

ω2
nm

v2
=

(
nπ

Lx

)2

+
(

mπ

Ly

)2

ωnm = v

√(
nπ

Lx

)2

+
(

mπ

Ly

)2

.

(c) With Lx = Ly = L,

ωnm =
vπ

L

√
n2 + m2. (30)

and so
ω11 =

vπ

L

√
2. (31)
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Considering the next few modes:

ω12 = ω21 =
vπ

L

√
5 =

√
5/2ω11 (32)

ω13 = ω31 =
vπ

L

√
10 =

√
5ω11 (33)

ω14 = ω41 =
vπ

L

√
17 =

√
17/2ω11 (34)

ω15 = ω51 =
vπ

L

√
26 =

√
25/2ω11 (35)

ω16 = ω61 =
vπ

L

√
37 =

√
37/2ω11 > 4ω11 (36)

ω22 =
vπ

L

√
8 = 2ω11 (37)

ω23 = ω32 =
vπ

L

√
13 =

√
13/2ω11 (38)

ω24 = ω42 =
vπ

L

√
20 =

√
10ω11 (39)

ω25 = ω52 =
vπ

L

√
29 =

√
29/2ω11 (40)

ω26 = ω62 =
vπ

L

√
40 =

√
20ω11 > 4ω11 (41)

ω33 =
vπ

L

√
18 = 3ω11 (42)

ω34 = ω43 =
vπ

L

√
25 = 5ω11 > 4ω11 (43)

ω44 =
vπ

L

√
32 = 4ω11 (44)

(45)

So we see that there are 17 modes with frequencies less than 4ω11 – these are
modes (m,n) = (1,1), (1,2), (2,1), (1,3), (3,1), (1,4), (4,1), (1,5), (5,1), (2,2),
(2,3), (3,2), (2,4), (4,2), (2,5), (5,2), and (3,2). Note that we can’t count e.g.
(2,2) as two modes – flipping m and n leads to a mode whose spatial structure
looks the same.

5. A Traveling pulse

First let’s recall that,

v =
√

τ

µ
=

√
τL

M

for a string, expressing µ in terms of the mass of a segment of length L. The tension
is created by a weight that has a mass 30 times that of the string. In other words,
τ = 30Mg. Plugging this into the expression above gives us,

v =
√

30gL.
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The pulse takes time t to travel a distance L/2, and hence has speed v = L/2t.
Therefore

v =
√

30gL =
L

2t

t =
1
2

√
L

30g

Using L = 20 m and g = 9.8 m/s2, t = 0.13 seconds.

6. A traveling wave.

(a). We’re given: y(x, t) = 0.2 sin [π(0.2x− 30t)] meters (with t in seconds).
We know from French equation 7-6 that propagating waves take the form y =
A sin( 2π

λ (x− vt)). All we need to do is pick off the values from our given equation.
The amplitude stands out first of all A = 0.2m. Next we can find the wavelength
by noting 2π

λ = 0.2π. This gives us λ = 10 m. We can now go on to calculate the
wave number k = 2π

λ = π
5 m−1. Next we’ll pick off the speed by noting 2π

λ v = 30π.
This gives us v = 150 m/s and then the frequency f = v

λ = 15 Hz. The period is
T = 1

f = 0.067s.

(b). The transverse speed is simply ∂y/∂t – the rate of change of y.

∂y

∂t
= 0.04π cos [π(0.2x− 30t)] (46)

whose maximum is simply 0.04π meters / sec.
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