LECTURE: \quad BOSE GASES
at Bose -Einstein Condensation

Degenerate, non-interacting Bosons.
Weill see: Below a "critical temperature, a sutitantial fraction of the particles will occupy the lowest energy orbital. Other orbitals will have neqfirible occupancy.
"Bore-Einstein Condensation. Bore, Einstein 1220° (ftheonp) onnas (Lipuidhecinm supeffuidity) wien an bothers, true BEe, 1995.
Surpuismy? Consider "He $(2 p, 2 n, 2 e)$ in a 1 an $)^{3}$ cube.
Spacing in energy between $n_{1}, n_{2}, n_{3}=1,1,1$ \& $2,1,1$
levees is $\approx 10^{-37} \mathrm{~J} \Rightarrow$ "naively" expect large ground sate occupancy at $T<10^{-37} \mathrm{~J} / \mathrm{K}_{B} \approx 10^{-14} \mathrm{~K}$.
Actual, critical temperature $T_{B E} \approx 4 K$!
hateresting...

$$
\text { Recall } f_{B E}=\frac{1}{\exp \left(\frac{\varepsilon-\mu}{\tau}\right)-1}=\text { occupancy of orbiter } Y \text { energy } \varepsilon \text {. }
$$

$$
=\frac{1}{\lambda^{-1} e^{t / 2}-1} \text {, using } \lambda \equiv e^{\mu / 2} \text {. }
$$

Note that we mast have $f_{B E} \geqslant 0$ (can't have negative \# \& patheds!)

$$
\begin{aligned}
& \Rightarrow \lambda^{-1} e^{g / \tau}-1 \geqslant 0 \quad\left(\frac{1}{4} \text { also } \geqslant 0\right) \quad \Rightarrow e^{(\varepsilon-\mu) / \tau} \geqslant 1 \\
& \Rightarrow \frac{\varepsilon-\mu}{2} \geqslant 0 \quad \Rightarrow \quad \mu \leq \varepsilon \quad \text { for any orbital. } \\
& \Rightarrow \mu \leqslant \varepsilon_{0}<\text { lowest } \varepsilon \text { (ground state) }
\end{aligned}
$$

Bosons: chem. pol. Cart be specter than the energy of the lowest orbital.
If we define $\varepsilon_{0}=0$, then $\mu \leq 0, \lambda \leq 1$.

Let's call the avg. \#particler in the ground state No.

$$
N_{0}=f_{Q_{E}}\left(\varepsilon_{0}\right)=\frac{1}{\exp \left(\frac{\varepsilon_{0}-\mu}{2}\right)-1}
$$

If τ is suffriantly, N_{0} must be lange (partides \rightarrow ground)
So denominctor must be suall, so $\exp \left(\frac{\varepsilon_{0}-\mu}{\varepsilon}\right)$ is nean , so $\frac{\varepsilon_{0}-\mu}{\tau}$ is very small (k positure, as above).
\Rightarrow Taylor series $\exp \left(\frac{\varepsilon_{0}-\mu}{\tau}\right)-1 \approx 1+\frac{\varepsilon_{0} *-\mu}{2}+\ldots-1$

$$
\Rightarrow N_{0} \approx \frac{\tau}{\varepsilon_{0}-\mu} \text { when } N_{0} \gg 1
$$

$$
\text { As } z \rightarrow 0, \mu \rightarrow \varepsilon_{0} \text { (so No is fimite) }
$$

For 2 sliputly $>0, \mu$ slightly $<\varepsilon_{0}$

How lage can τ be to mantain $N_{0} \gg 1$?
What determines μ ? $\sum_{\text {atilds,i }} \underbrace{\frac{1}{e^{\left(\varepsilon_{i}-\mu\right) / \tau}-1}}_{f\left(\varepsilon_{i}\right)}=\underbrace{N}_{\text {fotal partizes. }}$
As in the fo care, convat to an intepal:

Consider 3D, spin 0 bosons.
I same partic - in -a-6x as oan $3 D$ Jermion,

$$
2 s+1=1 \Rightarrow
$$ oney!

$$
\Rightarrow D(\varepsilon)=\frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \varepsilon^{1 / 2}
$$

just $\div 2$ of our electron $D(\varepsilon)$.
In general: $\quad\langle A\rangle=\int A f(\varepsilon) D(\varepsilon) d \varepsilon$

$$
\left[\begin{array}{l}
\text { Cdens. } 4 \text { states - a propertin } 1 \text { the "box } \\
\text { distributur - FD or BE or Boltzmanu }
\end{array}\right.
$$

Tensity of states

(Eq.1) $N=\frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \cdot \int_{0}^{\infty} \frac{\varepsilon^{1 / 2}}{e^{(\varepsilon-\mu) / 2}-1} d \varepsilon$. Cant to auahticalhy. or $\varepsilon_{0}^{\pi x}$ (in several).
Recall we case about N_{0} being lope, and so μ near ε_{0} Call $\varepsilon_{0}=0$, as we dit, Let's Look at $\mu=0$. (max possible μ). in the lenity) הhepl

$$
\begin{aligned}
& N=\frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\infty} \frac{\sqrt{\varepsilon} d \varepsilon}{e^{\varepsilon / 2}-1} \\
& N=\frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}} \tau\right)^{3 / 2} \underbrace{\int_{0}^{\infty} \frac{\sqrt{x} d x}{e^{x}-1}}_{\text {dimensindoss itegal, }}=1.306 \sqrt{\pi}
\end{aligned}
$$

Skip Recall $A_{Q}=\left(\frac{m z}{2 \pi \hbar^{2}}\right)^{3 / 2}-$ depends on r
Combining numbers

$$
(E q .2) \quad N=(2.612)\left(\frac{m z}{2 \pi \hbar^{2}}\right)^{3 / 2} V
$$

This is nonsensical : N deports on 2 ??

Wheres some particular Z at which the above relation is tue: call it ${\overline{c_{c}}} \quad N=2.612\left(\frac{m \tau_{c}}{2 \pi \hbar^{2}}\right)^{3 / 2} V$

Suppose $\tau>\tau_{c} \quad E_{q}, 2$ suggests $N>$ true N.
But return to Eq. 1 : As τ rises, μ gets fur then below $O^{-\varepsilon_{0}}$, as we saw earlier. So $e^{(\varepsilon-\mu) / \tau}$ is lassen, so the intogal in $\varepsilon_{q} .1$ is smaller, in such a way as to keep the right side of Eq. $1=N$.

Suppose $\tau<\tau_{c}$. More interesting
Nothing about the behavior of μ holp us, since $\mu=0$ ir as lase as μ can get.
What's going on?
our $N=\sum_{i} \frac{1}{e^{\left(\varepsilon_{i}-\mu\right) x_{2}}-1} \rightarrow \int_{0}^{\infty} D(\varepsilon) \underbrace{\frac{1}{e^{(\varepsilon-\mu) / 2}-1}}_{\text {is invalid! }} d \varepsilon$
Why'. As $\varepsilon \rightarrow 0, \quad D(\varepsilon) \rightarrow 0$ (as $\sqrt{\varepsilon})$ and $f_{B E}(\varepsilon) \rightarrow \infty$ (since $\mu \approx 0^{(\varepsilon \sigma)}$ at low τ).
The sum in $N=\frac{2}{t} \cdots$ has an "infinite spike" at $\varepsilon=0$ that ir not correctly represented by the inteqal.
The integral should correctly repuecat the pantiles in all the states away fum the gonad orbital (cohere there no spike).
So really our $N=\int D(\varepsilon) f(\varepsilon)$ de is Ne, the number of pantiles in the excited states.
So $N_{e}=(2.612)\left(\frac{m z}{2 \pi t^{2}}\right)^{3 / 2} V \quad$ for $\tau<\tau_{c}$
or, usiif the def. of $\tau_{c}, \quad N=\left(\frac{\tau}{\tau_{c}}\right)^{3 / 2 / 2} N \quad$ (for

The rect of The atoms must be in the ground state, so $N_{0}=N-N_{e}=\left[1-\left(\tau / r_{c}\right)^{3 / 2}\right] N \quad\left(\tau<\tau_{c}\right)$.

Abrupt accumulation of bosons in the ground state at $\tau<\tau_{c}:$ BoSE-EINSTEEN CONDENSATION
$T_{c}=$ "condensation temperature"
ground state atoms $=$ "condensate".
note $N=2.612\left(\frac{m \tau_{c}}{2 \pi \hbar^{2}}\right)^{3 / 2} V ;$ recall $n_{Q} \equiv\left(\frac{m \tau}{2 \pi \hbar^{2}}\right)^{3 / 2}$
$\Rightarrow \frac{N}{V}=2.612 n_{Q}\left(T_{c}\right) \quad ;$ i.e. at T_{c}, the
concentration $\frac{N}{V} \approx$ the quantum concentration n_{Q} meaning: when "wavefunctors" overlap, quantimen properties can be dramatic!

Experiments.
In 1995 -about 70 years after Bose-Einstern -
the Just Bose-Einstein condensate of weakly interacting Bosons:
Rubidium -87 , laser cooling t trapping. U colorado. Wieman etal.

$$
V=10^{-15} \mathrm{~m}^{3} ; T_{c} \approx 10^{-7} \mathrm{~K} .
$$

Nobel Prize.
Since the n, dilute gases of sodium, hydrogen, etc.
"New state" of matter - all pantiles in the same orbital.
Phenomena like coherence -diffraction of matter waves. Interferometry. "Quantum" effects.
BEC (sort of) for star l INTERACTING BOSONS

- Supenfluidity in helium -4. Zero viscosity phase below 2.17 K .
- Superfuidity in helium -3. ?! A fermion.

But ${ }^{3} \mathrm{He}-{ }^{3} \mathrm{He}$ pair is a boson; pairs form, condense-blowv 3 mk

- Super conductivity Again, Fermion pairs.

