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N O T E S  O N   T H E  S O M M E R F E L D  E X P A N S I O N ,  A P P L I E D  T O  “ N ”  
 

Start with the relation  
 0 ( ) ( )FDN D f dε ε ε∞

∫=  (1.1) 
where FDf , which I’ll simply write f   below, is the Fermi-Dirac distribution and D  is the density of states, 
which simply states that the integral of the distribution for our fermion system must equal the total number 
of particles, N .  As noted earlier, we can use this to determine the chemical potential of the system, since f  
depends on μ .  Let’s do this, at low but nonzero temperature. 
 
For 3D non-relativistic fermions,  
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The “interesting” region is near ε μ= , since this is the region whose shape changes appreciably with 
temperature, as discussed in class.  Let’s focus on this by integrating by parts.  Using “ u f= ” and 

“ 1/2dv dε ε= , we write: 
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The first term is zero at both limits (since 0ε =  at the left limit and 0f =  at the right). 
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, where ( ) /x ε μ τ≡ − .  Therefore 
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Equations 1.6 and 1.7 are exact – we have not yet made any approximations. 
For negative x  (i.e. ε μ< ) the integrand is very small.  Therefore: 
 



Approximation 1:  Consider the lower limit of integration in Eq. 1.7 to be −∞ .  (This is also the same as 
saying τ μ , and also therefore that Fτ ε   – why?).  This makes the integral look more “symmetric.” 

Approximation 2:  Taylor expand 3/2ε  about ε μ=  and keep only the first few terms. 

 
Note that we used the expression for 0D  that followed Eq. 1.2 .  Canceling N ’s: 
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, where the “correction” for nonzero temperature is small since τ μ and 

Fτ ε .  This means that we can replace μ  by Fε  in the correction term.  Therefore: 

 

2/322

1 ...
8F Fε

μ π
ε
τ⎛ ⎞⎛ ⎞

⎜ ⎟= − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (1.7) 

 

and, using the Taylor expansion ( )1 1 ...ax ax+ = + + , 
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We now have an expression for the temperature dependence of the chemical potential of the Fermion gas.  
Note that the chemical potential drops from its zero-temperature value, Fε , as the temperature rises; you can 
think about this “graphically” in the context of the integral in Equation 1.1. 
 
The same method of Sommerfeld expansion can be used to determine the temperature dependence of the 
system’s energy, U , as you’ll see in the homework, as well as all sorts of other physical properties (electrical 
conductivity, magnetic susceptibility, etc.).  The above expression for μ  is useful in all of these calculations. 


