Prof. Raghuveer Parthasarathy University of Oregon; Spring 2008

Physics 353: Problem Set 2 - SOLIIONS

1 Graphs


2 The blackbody peak.
2a. $u_{\omega}=\frac{d U}{V d \omega}=\frac{3 \hbar}{2 \pi^{2} c^{3}} \frac{\omega^{3}}{\left(e^{\hbar_{\omega} / z}-1\right)}$
Peak? defre $x \equiv \frac{k 0}{\tau} \quad$ (dimensionbess).
$\rightarrow u_{\omega}=\underbrace{\frac{3 \hbar}{2 \pi^{2} c^{3}}\left(\frac{\tau}{\hbar}\right)^{3}} \frac{x^{3}}{e^{x}-1}$
$\frac{d u_{0}}{d x}=(1)\left[\frac{3 x^{2}}{e^{x}-1}+\frac{-x^{3} e^{x}}{\left(e^{x}-1\right)^{2}}\right] .=0$ if

$$
\frac{3 x^{2}}{e^{x}-1}-\frac{x^{3}}{\left(e^{x}-1\right)^{2}}=0 \rightarrow \frac{3-\frac{x e^{x}}{e^{x}-1}}{1}=0
$$

$$
\begin{aligned}
& \text { (iguoing the trivial } x=0 \text { solution) } \\
& \text { thir Juictive zewo. Greph or plot. (callthirfunder "y") }
\end{aligned}
$$

where is thir Junctive zewo? Grph or plot. Coall eni Fundtre "y")
we see (below) that its zeno © $x=2.8$,

$$
\text { or } \frac{\hbar \omega}{2}=2.8 \mathrm{p} \text {, i.e } \omega=2.8 \frac{\tau}{\hbar}
$$


(b)
This is wrong. why?

$$
\begin{aligned}
& \text { We want the special density in terms of } \lambda \text {, not } w \text {. } \\
& \text { Note } \lambda f=c \text {, so } \lambda=\frac{c}{f}=\frac{2 \pi c}{\lambda \omega} ; \omega=\frac{2 \pi c}{\lambda} \\
& \text { Not quite correct }: \quad u_{\lambda}=\frac{3 \hbar}{2 \pi^{2} c^{3}} \frac{(2 \pi c)^{3}}{\left[\lambda^{3}\left(\exp \left(\frac{k}{\tau} \frac{2 \pi c}{\lambda}\right)-1\right]\right.} \\
& \text { Look for the maximum of their function. } \\
& \text { can proceed as above, os note that } \\
& \frac{d u}{d \lambda}=\frac{d u}{d \omega} \frac{d \omega}{d \lambda} ; \frac{d \omega}{d \lambda}=\frac{-2 \pi c}{\lambda^{2}} \neq 0 \text {, so } \\
& \frac{d u}{d \lambda}=0 \text { at the same } \omega \text { for which } \frac{d u}{d \omega}=0 \text {, } \\
& \text { ide. } \omega=\frac{\tau}{\hbar} 2.8 \text {, so pack at } \lambda=\frac{2 \pi c \hbar}{2}
\end{aligned}
$$

Correct: what is $u_{\lambda}$ ? Spectral density in terms of $\lambda$.
ie. how much energy in some ranee dd.

$$
u_{\lambda}=\frac{d u}{v d \lambda} \cdot \quad d u=v \frac{3 k}{2 \pi^{2} c^{3}} \frac{\omega^{3} d \omega}{e^{k_{j} / \tau}-1}
$$

$$
\left.\omega=\frac{2 \pi c}{\lambda} \text { (since } \lambda f=c\right) \text {, so } d \omega=\frac{2 \pi c}{\lambda^{2}} d \lambda \text {. }
$$

$$
d u=V \frac{3 k}{2 \pi^{2} c^{3}} \frac{(2 \pi c)^{3}}{\lambda^{3}} \frac{(-) 2 \pi c}{d \lambda} \lambda^{2}\left(\exp \left(\frac{k}{2} \frac{2 \pi c}{\lambda}\right)-1\right)
$$

$$
\text { (minus sign just means } \lambda \text { is "Gactwands" w.s.t. } w \text {.) }
$$

$$
\rightarrow u_{\lambda}=\frac{d u}{v d \lambda}=\frac{3 \hbar}{2 \pi^{2} c^{3}}(2 \pi c)^{4} \frac{1}{\lambda^{5}\left[\exp \left(\frac{\hbar 2 \pi c}{\tau \lambda}\right)-1\right]}
$$

Dineusonbloss $\quad z \equiv \frac{2 \pi c \hbar}{\tau \lambda}$. We're looking for the max. of $\frac{z^{5}-\lambda}{e^{z}-1} \cdot \frac{d}{d z}\left(\frac{z^{5}}{e^{z}-1}\right)=\frac{5 z^{4}}{e^{z}-1}+\frac{-z^{5} e^{z}}{\left(e^{z}-1\right)^{2}}=0$ $\rightarrow 5-\frac{z^{z}}{e^{z}-1}=0 \rightarrow$
Again save graphically or numerically...plot below

$$
\rightarrow \begin{aligned}
\text { chain save graphically or numerically... } \\
z=5.0
\end{aligned} \rightarrow \frac{2 \pi c \hbar}{\tau \lambda}=5.0 \rightarrow \lambda=\frac{2 \pi c h}{5.0 \tau}
$$

We should expect that the peak in $u_{\lambda}$ is at adifferent "location" then the Peak in $\omega$ since the transformation $\lambda \sim 1 / w$ "stretches" different pantry the function differently.


## 3 Numbers of photons

(a) We showed in class that the number of photons with $\omega$ between $\omega$ and $\omega+d \omega$ is $d N=\langle n\rangle d \Omega_{0}=\frac{V \omega^{2}}{\pi^{2} c^{3}}\left(\frac{d \omega}{\exp \left(\frac{\hbar \omega}{\tau}\right)-1}\right) . \mathrm{N}$ is simply the integral of this. Defining $x \equiv \hbar \omega / \tau$ as usual, $N=\int_{0}^{\infty} \frac{V \omega^{2}}{\pi^{2} c^{3}}\left(\frac{d \omega}{\exp \left(\frac{\hbar \omega}{\tau}\right)-1}\right)=\int_{0}^{\infty} \frac{V \tau^{3} x^{2}}{\pi^{2} \hbar^{3} c^{3}}\left(\frac{d x}{\exp (x)-1}\right)$, so $N=\frac{V}{\pi^{2}}\left(\frac{\tau}{\hbar c}\right)^{3} \int_{0}^{\infty}\left(\frac{x^{2} d x}{\exp (x)-1}\right)$


Graphically (a good, quick way to do evaluate the integral) we see that the area under the curve covers about 13 boxes of area 0.2 , so the integral $\approx 2.6$.

Numerically integrating, the integral $\approx 2.4$.
I'm sure you could look this up somewhere, also.
(b) Plugging in numbers, $\frac{V}{\pi^{2}}\left(\frac{\tau}{\hbar c}\right)^{3}=8.9 \times 10^{13}$, so $N=2.1 \times 10^{14}$ photons.
(c) Ideal gas: $N=\frac{P V}{\tau}$. Equating this with $N=\frac{V}{\pi^{2}}\left(\frac{\tau}{\hbar c}\right)^{3} \int_{0}^{\infty}\left(\frac{x^{2} d x}{\exp (x)-1}\right)$, we need $\frac{P}{\tau}=\frac{V}{\pi^{2}}\left(\frac{\tau}{\hbar c}\right)^{3} 2.4$, where I've inserted the value of the integral. Therefore $\frac{P(\hbar c)^{3} \pi^{2}}{2.4}=\tau^{4}$.
Noting that $\tau=k_{B} T$, this comes out to be about $140,000 \mathrm{~K}$.

4 There are many ways to go about expressing the partition function for the photons. Here is one approach that I like. Think of one particular configuration of the system that has $n_{1}$ photons in mode $1, n_{2}$ photons in mode $2, n_{3}$ photons in mode 1 , etc., where mode 1 has frequency $\omega_{1}$, mode 2 has frequency $\omega_{2}$, etc. What is the energy of this state?

$$
\begin{aligned}
E\left(n_{1}, n_{2}, n_{3}, \ldots\right) & =n_{1} \hbar \omega_{1}+n_{2} \hbar \omega_{2}+n_{3} \hbar \omega_{3}+\cdots \\
\rightarrow Z & =\sum_{n_{1}} \sum_{n_{2}} \sum_{n_{3}} \cdots \exp \left(-\frac{n_{1} \hbar \omega_{1}+n_{2} \hbar \omega_{2}+n_{3} \hbar \omega_{3}+\cdots}{\tau}\right) \\
& =\sum_{n_{1}} \sum_{n_{2}} \sum_{n_{3}} \exp \left(-\frac{n_{1} \hbar \omega_{1}}{\tau}\right) \exp \left(-\frac{n_{2} \hbar \omega_{2}}{2}\right) \exp \left(-\frac{n_{3} \hbar \omega_{3}}{\tau}\right) \ldots \\
& =\sum_{n_{1}} \exp \left(-\frac{n_{1} \hbar \omega_{1}}{\tau}\right)\left[\sum_{n_{2}} \sum \cdots \exp \left(\frac{-n_{2} \hbar \omega_{2}}{2}\right) \exp \left(-\frac{n_{3} \hbar \omega_{3}}{2}\right) \ldots\right],
\end{aligned}
$$

since all the " $n$, factors" are constants as for as The other sums are concerned

$$
=\left[\sum_{n_{1}} \exp \left(\frac{-n_{1} \hbar \omega_{1}}{2}\right)\right]\left[\sum_{n_{2}} \exp \left(\frac{-n_{2} \hbar \omega_{2}}{2}\right)\right]\left[\sum_{n_{3}} \cdots\right]
$$

similarly. Note that all these sums are the same!

$$
\begin{aligned}
& \rightarrow z=\prod_{m}^{\pi}[\underbrace{\sum_{n}}_{\text {geom, series, }} \frac{1}{1-e^{-\hbar \omega_{m} / z}} \underset{m}{\left.\exp \left(\frac{-n \hbar \omega_{m}}{\tau}\right)\right]} \\
& \rightarrow 7 \prod_{m}^{1-\exp \left(-\frac{\hbar \omega_{m}}{\tau}\right)}
\end{aligned}
$$

(b)

$$
\begin{aligned}
F & =-\tau \ln z \\
& =-\tau \ln \left(\prod_{m} \frac{1}{1-e^{-\hbar \omega_{m} / \tau}}\right) \\
& =\tau \sum_{m} \ln \left(1-e^{-\hbar \omega_{m} / \tau}\right)
\end{aligned}
$$

(c) Note that we can easily turn the above sum over modes into an integral over modes - ie. over " $d \Omega_{0}$ ". But we'd like to make this an integral over frequency, since all our expressions are functions of frequency. We already figured out how many modes are in a given frequency range i.e. what $d \Omega_{0} / d \omega$ is (see your lecture notes): $d \Omega_{0} / d \omega=\frac{V}{\pi^{2} c^{3}} \omega^{2} d \omega$. Therefore:

$$
\begin{aligned}
F & =\tau \int_{0}^{\infty} \frac{V}{\pi^{2} c^{3}} \omega^{2} d \omega \cdot \ln \left(1-e^{-\hbar \omega / \tau}\right) \\
& =\frac{V \tau}{\pi^{2} c^{3}} \int_{0}^{\infty} \ln \left(1-e^{-\hbar \omega / \tau}\right) \omega^{2} d \omega \\
& =\frac{V \tau}{\pi^{2} c^{3}} \cdot \frac{\tau^{3}}{\hbar^{3}} \int_{0}^{\infty} \ln \left(1-e^{-x}\right) x^{2} d x \\
& =\frac{V \tau^{4}}{\pi^{2} c^{3} \hbar^{3}} \cdot\left(\left.\frac{x^{3}}{3} \ln \left(1-e^{-x}\right)\right|_{0} ^{\infty}-\frac{1}{3} \int_{0}^{\infty} \frac{x^{3} d x}{e^{x}-1}\right) \\
& =-\frac{V \tau^{4}}{\pi^{2} c^{3} \hbar^{3}} \cdot \frac{1}{3} \cdot 6 x \frac{\pi^{4}}{90} \\
& =-\frac{\pi^{2} V \tau^{4}}{4 t^{3} \hbar^{3} c^{3}}
\end{aligned}
$$

(d) (Yan writes using $T=\tau / k_{B}$ and $S=k_{B} \sigma$.)
(d).

$$
\begin{aligned}
S & =k\left(\ln z-\beta \frac{\partial}{\partial \beta} \ln z\right) \\
& =\frac{1}{T}(-F)-\frac{1}{T} \frac{\partial}{\partial \beta} \ln z \\
& =\frac{\pi^{2} V k^{4} T^{3}}{45 \hbar^{3} c^{3}}-\frac{1}{T} \frac{\partial}{\partial \beta}\left(\frac{\pi^{2} V}{45 \hbar^{3} c^{3} \beta^{3}}\right) \\
& =\frac{\pi^{2} V k^{4} T^{3}}{45 \hbar^{3} c^{3}}+3 \frac{1}{T} \cdot \frac{\pi^{2} V k k^{4} T 4}{45 \hbar^{3} c^{3}} \\
& =\frac{4 \pi^{2} V k^{4}}{45 \hbar^{3} c^{3}} T^{3}
\end{aligned}
$$

(e). $\quad P=+\tau \frac{\partial}{\partial V} \ln z=\frac{\partial}{\partial V}(-F)=\frac{\pi^{2} \tau^{4}}{45 \hbar^{3} c^{3}}$.
(f)

$$
\begin{aligned}
U & =-\frac{\partial}{\partial \beta} \ln z \\
& =-\frac{\partial}{\partial \beta} \cdot\left(\frac{\pi^{2} V}{45 \hbar^{3} c^{3} \beta^{3}}\right) \\
& =\frac{3 \pi^{2} V \tau^{4}}{45 \hbar^{3} c^{3}} \\
\therefore P & =\frac{U}{3 V}
\end{aligned}
$$

## 5 A one-dimensional blackbody.

- A one-dimensional blackbody the number of states with frequencies $\omega \rightarrow w+d w$ is
$\frac{2 L}{h} d p=\frac{2 L}{C \cdot 2 \lambda} d \omega=\frac{L}{C \pi} d \omega$.

$\therefore U(w, T) d \Delta \frac{L}{c \pi} \cdot \frac{\hbar \omega d \omega}{e^{\frac{\hbar \omega}{\tau}}-1}$
$\therefore U(\omega, \tau)=\frac{L \tau^{2}}{c \pi \hbar} \int_{0}^{\infty} \cdot \frac{\frac{\hbar \omega}{\tau} \cdot d\left(\frac{\hbar \omega}{\tau}\right)}{e^{\frac{\hbar \omega}{\tau}}-1}$
$=\frac{L \tau^{2}}{c \pi \hbar} \int_{0}^{\infty} \frac{x d x}{e^{x}-1}$
$=\frac{L \tau^{2}}{c \pi \hbar} \cdot \frac{\pi^{2}}{6}$
$=\frac{L \pi}{6 c \hbar} \tau^{2}$
$\therefore U \propto \tau^{p} \quad p=2$

6 (3 pts.) Three short literature searches.
(a) I found 229 results, nearly all of which seem to be books.
(c) I found 22,306 articles!

