
Prof. Raghuveer Parthasarathy 
University of Oregon; Spring 2008 

 
Physics 353:  Problem Set 3 

 
 
Due date:  Wednesday, April 23, 5pm.  (Turn in to the assignment to the box outside my door.) 
Reading:  Kittel & Kroemer Chapter 4; start Chapter 5. 
 
 
1, 5 pts.  Kittel and Kroemer Chp. 4 #18.  Isentropic expansion of a photon gas.  Comments:  
(1) The relation “ 1/3Vτ = constant” for an isentropic expansion follows trivially from PS2 #4d.  (2)  
In part (a), the idea is this:  We observe the cosmic background radiation, which has a temperature 
of 2.7 K.  This is a remnant of the early universe, when the temperature was about 3000 K, at which 
point the average photon could ionize hydrogen atoms (see PS 8 #2 from Phys. 352).  The universe 
has expanded and cooled since then.  This expansion has been isentropic “by definition” – there’s 
no place outside the universe that heat could have flowed in from! 
 
 
2, 3 pts.  Phonon heat capacity.  As discussed in class, the thermal vibrations of a solid can be 
analyzed very similarly to blackbody radiation.  We showed that 
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− , where the symbols were defined in class.  Let’s consider this 

expression in various temperature regimes.  We’ll define the Debye temperature: D maxωΘ = . 
(a, 1 pt.)  At low τ ,  we can treat maxω ≈ ∞  for the integration.  Show that in this regime the 
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= .  (We’ve sketched most of this in class and in the text.) 

(b, 2 pts.)  Show that at high temperature, Dτ Θ , the specific heat 3Vc N= .  (Consider the 
lowest order expansion of exp( )/ω τ .) 

 
 
3, 6 pts.  Photon Energy.  The “equation of state” for a photon gas is 4P aτ= , where a  is some 

constant 
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, as you showed on the previous problem set.  This is the photon analog of the 

ideal gas equation of state, PV Nτ= , as it relates various observable physical parameters.  From the 
equation of state alone we can deduce that the energy 43U aVτ=  in various ways.  Let’s consider a 
Carnot cycle applied to the photon gas. 



Consider the P-V diagram shown, of an infinitesimal Carnot cycle.  
Note that the isotherms are also stages of constant pressure.  (Why?)  
The work done is dW dP dV= .  (Why?) 
(a, 2 pts.)  Calculate the heat absorbed during one of the isothermal 

stages.  Express your answer in terms of , ,P dV  and U
V
∂
∂
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.) 

(b, 2 pts.)  Using the Carnot efficiency, relate your work and heat to T  and dT . 
(c, 2 pts.)  Assuming 0U =  at 0τ = , solve your expression from (b) to determine ( , )U V τ . 
 
 
ABOUT PROBLEMS 4 AND 5:  We’ll examine the surface temperature of the Earth.  The mean 
surface temperature of the Earth is about 288 K, or 15 °C – this corresponds to a peak wavelength 
of the blackbody spectrum in the infrared range.  The sun’s peak is in the visible, as noted in class. 
 
4, 5 pts.  Surface temperature of the Earth – Part 1.  Kittel and Kroemer Chp. 4 #5.  Please first 
express the temperature of the Earth symbolically in terms of T   (the temperature of the sun), R  
(the radius of the sun), SED  (the Earth-sun distance), and any other necessary symbols, before 
plugging in numbers.   
 
 
5, 6 pts.  Surface temperature of the Earth – Part 2.  The greenhouse effect.  The temperature 
of the Earth is warmer than the value you (hopefully) found in the previous problem.  Why?  The 
Earth’s atmosphere contains gases like CO2 and H2O that absorb infrared radiation.  The peak of 
the sun’s spectrum (T  = 5800 K) lies in the visible range, so most of the sun’s radiation passes 
through the atmosphere.  The peak of the Earth’s spectrum lies in the infrared range, and so some 
of it is absorbed by the atmosphere.  This is the “greenhouse effect.”  Let’s calculate the temperature 
the Earth would have using an extreme treatment of the atmospheric “blanket.”   
 Consider the atmosphere to be a layer that is transparent to all the sun’s radiation, and 
perfectly absorbent to all the Earth’s radiation.  The atmosphere radiates its energy outward to space 
and inward back to Earth, equally, and is in radiative equilibrium.  The Earth is also in radiative 
equilibrium.  The separation between the atmosphere and the Earth’s surface is negligible – you can 
think of them as planes with sunlight incident.  Calculate the temperature of the Earth.  (Hopefully, 
you should find a value that is larger than the true temperature of the Earth1.) 

                                                 
1 The fraction of infrared radiation absorbed by the atmosphere is a crucial determinant of the Earth’s climate.  A large 
body of evidence points to increasing amounts of greenhouse gases in the atmosphere generated largely by fossil fuel 
burning and having the consequence of increasing temperatures.  By “large body of evidence” I mean so much that even 
Shell Oil, well known for its intense disregard for “social” concerns, writes that “We acknowledge that this problem is 
related to the burning of fossil fuels and believe urgent action is needed to stabilize atmospheric concentrations of 
greenhouse gas...” (http://www.shell.com/static/au-en/downloads/corporate/annual_review_2003.pdf).  If you’d like 



 
 
6, 6 pts.  Kittel and Kroemer Chp. 4 #8.   
 
 
7, 5 pts.  Chemical Potential of an Ideal Gas.  We will calculate the chemical potential, μ , for an 

ideal gas.  The gas may have internal degrees of freedom. 
Starting point:  We derived several useful relations regarding ideal gases in Phys. 352.  We showed 

that for a single monatomic particle in a box of volume V , the partition function 1,PB QZ n V= , 

where Qn  is the “quantum concentration” (PS8 no. 3).  We showed that if there are internal 

degrees of freedom, 1 1, intPBZ Z Z= , where intZ  is the partition function of the “internal states” 

(Final Exam, no. 5).  For N  particles, we might expect ( )1
NZ Z= , since the particles are non-

interacting and their energies simply add, giving simple products of exponentials in the sum over 
states that makes up the partition function.  This is almost right, except that we are overcounting 
the number of states available to N  particles – just as we did when deriving the ideal gas law.  

(See also K&K p 74-76).  The true partition function is 
( )1
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(a, 4 pts.)  From the partition function, calculate the Helmholtz Free Energy and then the chemical 

potential, μ , as a function of int, and, ,Qn Zn τ , relating μ  and F  as discussed in class.  Use 
the Stirling approximation for factorials.  Note that /n N V≡ . 

(b, 1 pt.)  Mr. K. thinks:  For a monatomic ideal gas, I know that 3
2
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.  Therefore 3
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μ τ= .  Why is this wrong?  (No calculations are necessary.) 

 
 
8, 0 pts.  Final Project Reading.  Please read the final project description carefully.  Read the list of 
suggested topics 
 
9, 0 pts.  One short literature search.  Last week (PS2 #6c), you searched INSPEC for the TOPIC 
“superconductivity” in the YEARS PUBLISHED “1999-2008,” and hopefully found an enormous 
number of papers (> 20,000).   It’s useful to be able to further limit the papers one finds by some 
criteria.  Figure out how to limit this to papers that are “Review” papers – i.e. papers that review or 
comment on papers describing original research.  In INSPEC, this is done by refining the 
“treatment type.”  Look through the “help” index and find what the “treatment types” are.  This 
exercise is optional, since it should be covered in the upcoming Science Library tutorial.  But if you’d 
like to try it now, or if you can’t attend the tutorials, go ahead.  
 
                                                                                                                                                             
to read more there are several sources, most notably the IPCC – see the Final Project list, and also http://ipcc-
wg1.ucar.edu/wg1/Report/AR4WG1_Print_FAQs.pdf . 


