Physics 353: Problem Set 5- SOயIIONS

1. Particle states.
a) particles are fermions
(1) One particle in each of the $\mathbf{6}$ lowest
(1) levels; zero in all the others.
(1)
(1)
(1)
b) bosons.

C) fermions one possible configuration

(1) \gg empty
(1)
(I)
(1)
(1)

For boson system. it could be

So there B one possible configuration.

2. Derivative of the Fermi-Dirac function. Kittel \& Kroemer \#6.1.

$$
\begin{aligned}
& f(\varepsilon)=\frac{1}{e^{(\varepsilon-\mu) / \tau}+1} \\
& \frac{\partial f}{\partial \varepsilon}=-\frac{\frac{1}{\tau} e^{(\varepsilon-\mu) / \tau}}{\left(e^{(\varepsilon-\mu) / \tau}+1\right)^{2}}
\end{aligned}
$$

at $\varepsilon=\mu$

$$
-\left.\frac{\partial f}{\partial \varepsilon}\right|_{\varepsilon=\mu}=+\frac{\frac{1}{\varepsilon} \cdot e^{0}}{\left(e^{0}+1\right)^{2}}=\frac{1}{4 \tau}
$$

so the lower the temperature, the steeper the slope. of the Fermi-Dirac function.
3. Symmetry of filled and vacant orbitals. Kittel \& Kroemer \#6.2.

$$
\begin{aligned}
& f(\mu+\delta)=\frac{1}{e^{(\mu+\delta-\mu)}+1}=\frac{1}{e^{\delta}+1} \\
& f(\mu-\delta)=\frac{1}{e^{(\mu-\delta-\mu)}+1}=\frac{1}{e^{-\delta}+1}=\frac{e^{\delta}}{e^{\delta}+1} \\
& \therefore f(\mu+\delta)+f(\mu-\delta)=\frac{1+e^{\delta}}{e^{\delta}+1}=1 \\
& \therefore f(\mu+\delta)=1-f(\mu-\delta)
\end{aligned}
$$

So the probability than an orbital δ above the Fermi level is occupied is equal to the probability an orbital δ below the fermi level is vacant.
4. Density of orbitals in one and two dimensions.
(a) For electrons in a ONE-DIMENSIONAL box:
$\varepsilon_{n}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}} n^{2}$, where n is a positive integer
The Fermi evieigy ε_{F} is the energy of the highest filled orbital (at $T=0$). $\varepsilon_{F}=\frac{\hbar_{1}^{2} \pi^{2}}{2 m L^{2}} n_{F}^{2}$, where n_{F} is the highest n.
There are 2 electrons per orbital; so $N=2 \times \sum_{n=1}^{n} 1=2 n_{F}$.
Therefore $\varepsilon_{F} \equiv \tau_{F}=\frac{\hbar^{2} \pi^{2} N^{2}}{8 m L^{2}}$
We wish to know the PENSITY of ORBITALS $D(\varepsilon)$; that is, $D(\varepsilon)$ such that $D(\varepsilon) d \varepsilon$ is the number, f ribitals between ε and $\varepsilon+d \varepsilon$.

$$
D(\varepsilon) \equiv \frac{d N}{d \varepsilon}
$$

From above, f The number N of pee election orbitals of every y less than or equal to some ε is $N(\varepsilon)=\left(\frac{8 m L^{2} \varepsilon}{\hbar^{2} \pi^{2}}\right)^{1 / 2}$.
We could simply differentiate this; here's another way to look at the math:

$$
\begin{array}{ll}
\ln N=\frac{1}{2} \ln \varepsilon+\text { cost. } & d(\ln N)=d\left(\frac{1}{2} \ln \varepsilon \text { twist }\right) \\
\frac{d N}{N}=\frac{1}{2} \frac{d \varepsilon}{\varepsilon} . & D(\varepsilon) \equiv \frac{d N}{d \varepsilon}=\frac{N(\varepsilon)}{2} \cdot \\
& D(\varepsilon)=\left(\frac{2 m L^{2}}{\hbar^{2} \pi^{2}}\right)^{1 / 2} \frac{1}{\sqrt{\varepsilon}}, \quad D
\end{array}
$$

(b) In two dimensions, $\varepsilon_{n}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}} n^{2}$, where $n^{2}=n_{x}{ }^{2}+n_{n}{ }^{2}$. As $\ddot{\sim}$

$$
N=\frac{1}{2} \pi n_{F}^{2} . \quad n_{F}^{2}=\frac{2 N}{\pi} . \quad \varepsilon_{F}=\frac{\hbar^{2} \pi N}{m L^{2}}
$$

$N(\varepsilon)=\frac{\varepsilon m L^{2}}{\hbar^{2} \pi}=$ the number of pee election orbitals
less than or equal to some ε. $\ln N=\ln q+$ const. $\frac{d N}{N}=\frac{d \varepsilon}{\varepsilon}$.

$$
D(\varepsilon) \equiv \frac{d N}{d \varepsilon}=\frac{N(\varepsilon)}{\varepsilon} . A \equiv L^{2} . \Rightarrow D(\varepsilon)=\frac{A m}{\pi \hbar^{2}}
$$

5, Energy of a relativistic Fermi gas. Kittel \& Kroemer \#7.2.
$E_{n_{1}, n_{2}, n_{3}}=\frac{\hbar c \pi}{L}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right)^{1 / 2}$, where the "n's" are integers. The number of orbitals, $N(\varepsilon)$, with $\varepsilon<\varepsilon^{*}$, where ε^{*} is some energy, is the volume of the first octant of a sphere of radius $n_{F}=\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right)^{1 / 2} \quad$ (times 2 for the spin degeneracy). Therefore $N(\varepsilon)=2 \frac{1}{8} \frac{4}{3} \pi n_{F}^{3}=2 \frac{1}{8} \frac{4}{3} \pi\left(\frac{L c \varepsilon}{\hbar \pi}\right)^{3}$. Noting that $V=L^{3}, N(\varepsilon)=\frac{V}{3 \pi^{2} \hbar^{3} c^{3}} \varepsilon^{3}$, Therefore the density of states $D(\varepsilon)=\frac{d N}{d \varepsilon}=\frac{V}{\pi^{2} \hbar^{3} c^{3}} \varepsilon^{2}$.
At $\tau=0$ the occupancy is 1 for $\varepsilon<\varepsilon_{F}$ and zero for $\varepsilon>\varepsilon_{F}$, allowing us to determine ε_{F} in terms of the particle number, etc.:

$$
\begin{aligned}
\therefore \quad \begin{array}{rl}
\varepsilon<\varepsilon_{F} & f=1 \\
\therefore & =\int_{0}^{\varepsilon_{F}} f D(\varepsilon) d \varepsilon \\
& =\int_{0}^{\varepsilon_{F}} D(\varepsilon) d \varepsilon \\
\therefore \varepsilon_{F} & =\left(\frac{V N \pi^{2} \hbar^{3} c^{3}}{\pi^{2} \hbar^{3} c^{3}} \int_{0}^{\frac{1}{3}}\right)^{\frac{1}{3}} \varepsilon^{2} d \varepsilon \\
& =\frac{1}{3} \frac{V \varepsilon_{F}^{3}}{\pi^{2} \hbar^{3} c^{3}} \\
& =\hbar \pi C\left(\frac{3 n}{\pi}\right)^{1 / 3}
\end{array}
\end{aligned}
$$

b) the total energy of the ground state of the gas is

$$
\begin{aligned}
U_{0} & =\int f D(\varepsilon) \varepsilon d \varepsilon=\int_{0}^{\varepsilon_{F}} \cdot \frac{V}{\pi^{2} \hbar^{3} c^{3}} \cdot \varepsilon^{3} d \varepsilon=\frac{V}{\pi^{2} \hbar^{3} c^{3}} \cdot \frac{1}{4} \varepsilon_{F}^{4} \\
& =\frac{V}{\pi^{2} \hbar^{3} c^{3}} \cdot \frac{1}{4} \cdot \frac{3 N \pi^{2} \hbar^{3} c^{3}}{V} \cdot \varepsilon_{F}=\frac{3}{4} N \varepsilon_{F} .
\end{aligned}
$$

