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Physics 353:  Problem Set 6 

 
 
Due date:  Wednesday, May 21, 5pm.   
Reading:  Kittel & Kroemer Chapter 7 
Comments:  Several problems involve simple numerical estimates.  Don’t consider more than 2 significant 
figures – we’re looking for “order of magnitude” values for comparing various quantities.  The problems on 
this problem set are fairly short except for the last one (#5).  For #5, please be sure you understand the 
Sommerfeld expansion, about which I have distributed a handout. 
 
 
1, 8 pts.  The sun.  The center of the sun has a density 510ρ ≈  kg/m3, and is mostly composed of ionized 

hydrogen (i.e. protons and electrons).  Its temperature is 710T ≈ K. The mass of a proton is 
271.7 10pm −= × kg, and the mass of an electron is 319.1 10em −= ×  kg.  (Note 231.38 10Bk −= ×  J/K.)   

a, 2 pts.  Calculate (roughly) the Fermi temperature of protons in the solar interior.  Do the protons comprise 
a degenerate Fermi gas or a classical gas?  What about the electrons? 

b, 2 pts.  The gravitational (“hydrostatic”) pressure, gP , at the center of a sphere of mass M  and radius R  

will depend on M , R , and Newton’s gravitational constant 116.67 10G −×=  m3 / (kg s2).  Using 
dimensional analysis, derive an expression for gP  in terms of M , R , G , and an unknown 
dimensionless constant. 

c, 1 pt..  Assuming the dimensionless constant 1≈ , determine gP  at the center of the sun.  The mass of the 

sun is 302.0 10M ×=  kg, and its radius 87.0 10R ×=  m. 

d, 1 pt.  Calculate the radiation pressure for a blackbody at 710T ≈ K.  (Recall that you derived an expression 
for the pressure of a photon gas in Problem Set 2.)  Is this (roughly) sufficient to balance the pressure 
you found in part (c)? 

e, 2 pt.  Calculate the ideal gas pressure or the degenerate Fermi Gas pressure (whatever is appropriate to 
your answer to part (a)) for the solar interior.  Is it (roughly) sufficient to balance the pressure you found 
in part (c)? 

 
 
 
2, 2 pts.  Degeneracy Pressure.  Consider a system of fermions at zero temperature.  Using the relation 
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, derive an expression for the degeneracy pressure for a system of fermions at 0T = .  

(You may use the relation for U  from class.)  Show that your relation satisfies the general result we 

derived last term for non-relativistic particles: 
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3, 3 pts.  Degeneracy Pressure.  Consider a system of fermions at zero temperature. 
a, 2 pts.  As noted in class, the degeneracy pressure for electrons in a metal is canceled by the electrons’ 

attraction to the positive ions in the metal, and so is not directly observable.  A more tangible property is 

the “bulk modulus” 
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, which characterizes the resistance of a material to compression.  

(To generate a fractional change in volume  
V
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, we need to apply pressure 
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b, 1 pt.  Imagine that the bulk modulus of copper (density 8000 kg/m3, one conduction electron per atom, 
electron mass 319.1 10em −= ×  kg, atomic mass 64 pm× , 271.7 10pm −= × kg)  is solely due to the 

“ 0T = ” gas of degenerate electrons.  Estimate B .  Compare to the measured value of about 
111.4 10×  Pa, and comment on whether the electron gas seems like a significant contributor to the 

properties of the metal. 
 
 
 
4, 8 pts.  A white dwarf star1.  White dwarf stars are hot and dense and behave as generate electron gases.  
(There are protons and neutrons present as well, acting as a non-degenerate gas that we can ignore.)  The 
degeneracy pressure of the electrons supports the star.  Throughout this problem, assume the temperature 

0T = .  (We’ll justify this in part (e).) 
a, 2 pts.  Show using dimensional analysis that the gravitational potential energy gU  is related to the star’s 

mass M ,  radius R , and Newton’s constant 116.67 10G −×=  m3 / (kg s2) by 
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c is a positive dimensionless constant.  The minus sign does not emerge from dimensional analysis – 
explain its physical meaning.  (Hint: which way does the gravitational force point, if we want to remove 

mass from the star?)  By the way: a full analysis yields 3
5c = ; use this below. 

b, 2 pts.  Consider there to be one proton and one neutron per electron, and that all particles are 
nonrelativistic.  Show that the energy of the degenerate electrons – i.e. the total kinetic energy of the 

0T =  “particles in a box” is 
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= , where 319.1 10em −×=  kg is the electron mass, 

271.7 10pm −×=  kg is the proton or neutron mass.  You can leave the numerical prefactor in terms of 

π , cube-roots, etc. – I’ve calculated it to stress that it’s not far from 1.  Hint:  There’s no new physics in 
this problem – just think clearly about what the parameters are in our expression for U  for fermions, 
and how to relate these to things like M  etc. 

c, 2 pts.  At equilibrium, we know that the total free energy is minimized; at 0T =  the total energy 

g kU UU= +  is minimized.  Examine U  as a function of R , and derive an expression for the 
equilibrium radius in terms of the star’s mass. As the mass increases, does the star’s radius increase or 
decrease?  You may find it helpful to sketch ( )U R . 

                                                 
1 based on #7.23 from D. Schroeder, Thermal Physics. 



d, 1 pt.  Consider a white dwarf star, like Sirius B, whose mass is about the same as our sun’s 
( 302.0 10M ×=  kg).  What is its equilibrium radius?  How does this compare to our sun’s?  (See 1c.)  
How does the density of the star compare to that of water (1 g / cm3)? 

e, 1 pt.  Calculate the Fermi temperature for the white dwarf of part d.  The temperature of Sirius B is around 
25,000 K.  Is our 0T =  approximation reasonable? 

By the way:  We’re only a few steps away from deriving the “Chandrasekhar limit” – a fundamental 
upperbound on the mass a star can have and still support itself.  In brief:  Eventually as M  increases we 
need to consider relativistic degenerate electrons, easy to do given your results from Problem Set 5.  It 
turns out that this “simple” change leads to the consequence that there is no possible equilibrium R , and 
also that there is a maximum M .  (The latter fact is a bit harder to prove.)  You can read about this if 
you wish, or wait until one of the end-of-term presentations. 

 
 
5, 9 pts.  )(U τ  for fermions.  As discussed in class, use the Sommerfeld expansion to derive an expression 
for the energy of a fermi gas at low temperature.  (Note: the text takes a different approach to )(U τ .  Don’t 
do this – use the Sommerfeld expansion.  The text’s approach is shorter, but it’s harder to generalize to new 
situations.)  Note that this derivation proceeds just like the Sommerfeld expansion for N  presented in class. 

a, 6 pts.  First show:  
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b, 3 pts.  Then use the expansion for μ  derived in class to show: 
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