Prof. Raghuveer Parthasarathy
University of Oregon; Spring 2008
Physics 353: Problem Set 6 - SOШЛIONS

1. The sun.
(a) $p \approx 10^{5} \mathrm{~kg} / \mathrm{m}^{3}$ Mostly hydrogen (ioxiged),

$$
\text { so } m \approx m_{\text {proven }}=1.7 \times 10^{-27} \mathrm{~kg} \text {. }
$$

$n=\frac{\rho_{m}}{m_{p}}=$ density of protons and ado = density of electrons (by neutrality)
Fermi energy $\varepsilon_{F}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n\right)^{2 / 3}$.
Fermi Temperature (conventional units) $T_{P}=\frac{\varepsilon_{F}}{k_{n}}$.

$$
\rightarrow T_{f}=\frac{1}{k_{B}} \frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n\right)^{2 / 3}=\frac{1}{k_{B}} \frac{\hbar^{2}}{2 m}\left(3 \pi^{2} \frac{f}{m_{p}}\right)^{2 / 2}
$$

For the protons, $m=m_{p}$. Numbers $\rightarrow T_{f}=3600 \mathrm{~K}$ (pistons)
For the electrons, $m=m_{k}$. Numbers $\rightarrow T_{F}=6.6 \times 10^{6} \mathrm{~K}$
$T \approx 10^{7} \mathrm{~K}$ (actual temperature).
Protons: $T>T_{F}$, so the solan protons should
not be treated ar a degenerate Fem:
gas, but pother a classical gar.
electrons: $T \approx T_{F}$, so The electors
are "intermediate" between behaving as a classical $\mathrm{gas}^{\text {a }}$ and as a degenerate Fermi gas.
b.

$$
\begin{aligned}
& \text { Gravitational (hydiodatic) pressure } P=G^{a} M^{b} R^{c} \text {. } \\
& \left.[D]=\frac{\text { Fare }}{\text { area }}=\frac{M L}{T^{2} L^{2}} \quad \text { (via } " F=\text { ma" }\right)=[P]=\frac{M}{L T^{2}} \\
& {[G]=\frac{L^{3}}{M T^{2}} \quad[R]=L \quad[M]=M \quad \Rightarrow \quad \frac{M}{L T^{2}}=\left(\frac{L^{3}}{M T^{2}}\right)^{a} M^{b} L^{c}} \\
& \Rightarrow a=1 \text { (lookat } T \text {) } \Rightarrow 3+c=-1 \text { (look at } L \text {) } \Rightarrow c=-4 \\
& \Rightarrow-a+b=1 \Rightarrow b=2 \text { (look at M) } \\
& \Rightarrow P=(H) G \frac{M^{2}}{R^{4}}
\end{aligned}
$$

c. Using the given values for $\mathrm{M}, \mathrm{G}, \mathrm{R}$:
d. From PS2, $P_{\text {blackbody }}=\frac{\pi^{2}}{45 \hbar^{3} c^{3}} \tau^{4}$, where $\tau=k_{B} T$ as usual. Plugging in numbers: $P_{\text {blackbody }}=2.5 \times 10^{12}$, insufficient to balance $P_{g}: P_{g} \approx \frac{G M^{2}}{R^{4}}=1.1 \times 10^{15} \mathrm{~Pa}$.
e. For an ideal gas, $P_{\text {idealgas }}=n \tau$, so $P_{\text {idealgas }}=\frac{\rho}{m_{p}} \tau$ (see part (a)), independent of whether we consider protons or electrons. Plugging in numbers: $P_{\text {idealgas }}=8.3 \times 10^{15} \mathrm{~Pa}$. This should certainly be relevant for the protons, and we see that it is sufficient to balance the gravitational pressure. For $T=0$ fermions, the degeneracy pressure $P_{F D}=\frac{2}{5} \frac{N}{V} \varepsilon_{F}=\frac{2}{5} n \varepsilon_{F}$ (see Problem 2, or the text). For the electrons, plugging in numbers: $P_{F D}=2.2 \times 10^{15} \mathrm{~Pa}$. The true pressure due to the electrons is therefore somewhere between 2.2×10^{15} and $8.3 \times 10^{15} \mathrm{~Pa}$, in any case sufficient to balance the gravitational pressure.

2. Degeneracy Pressure.

$$
\text { From class, } \begin{aligned}
& u_{2}=0=\frac{3}{5} N \varepsilon_{F} \text { for } 3 D \text { Eequerate fermions. } \\
& \varepsilon_{F}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} \frac{N}{V}\right)^{2 / 3} . \\
& \text { pressure } P=-\left.\frac{\partial u}{\partial V}\right|_{\sigma, N} \Rightarrow P_{\tau=0}=-\frac{\partial}{\partial V}\left(\frac{3}{5} N \frac{x^{2}}{2 m}\left(3 \pi^{2} \frac{N}{V}\right)^{2 / 3}\right) \\
& \Rightarrow P=+\frac{2}{3} \frac{\alpha}{5} N \frac{\hbar^{2}}{2 m}\left(3 \pi^{2}\right)^{2 / 3} N^{2 / 3} V^{-5 / 3} \\
& \Rightarrow P=\frac{2}{3} \frac{3}{5} N \frac{\hbar^{2}}{2 m} \underbrace{\left(\frac{3 \pi^{2} N}{V}\right)^{2 / 3}}_{\varepsilon_{1}=} V^{-1}=\frac{2}{3} \frac{3}{5} \frac{N \varepsilon_{F}}{V} . \\
& \Rightarrow P=\frac{2}{3} \frac{u}{V}
\end{aligned}
$$

3 Degeneracy Pressure.

a
From above, $P=\frac{2}{5} N \frac{h^{2}}{2 m}\left(3 \pi^{2} N\right)^{2 / 3} v^{-5 / 3}$.

$$
\Rightarrow \frac{\partial P}{\partial v}=-\frac{2}{3} N \frac{\hbar^{2}}{2 m}\left(3 \pi^{2} N\right)^{2 / 3} v^{-8 / 3}=-\frac{2}{3} N \varepsilon_{F} \frac{1}{v^{2}}
$$

$\Rightarrow B=-V \frac{\partial \rho}{\partial v} @ \tau=0=B_{\tau=0}=\frac{2}{3} \frac{N \varepsilon_{p}}{V}$
$=B_{\tau=0}=\frac{2}{3} \frac{5}{3} \frac{u}{v}=B_{\tau=0}=\frac{10}{9} \frac{u}{v}$
\mathbf{b} We showed in class that $U=\frac{3}{5} N \varepsilon_{F}$ and $\varepsilon_{F}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n\right)^{2 / 3}$, where n is the concentration of electrons. Copper has a density of $\rho=8000 \mathrm{~kg} / \mathrm{m}^{3}$, with each atom having mass $m=64 \times m_{p}$, where $m_{p}=1.7 \times 10^{-27} \mathrm{~kg}$. Each atom provides one electron, so $n=\rho / m$. Writing also $N=n V$, we can express our relation for B as $B=\frac{10}{9} \frac{U}{V}=\frac{10}{9} \frac{3}{5} \frac{N \varepsilon_{F}}{V}=\frac{2}{3} \frac{\rho}{m} \frac{\hbar^{2}}{2 m_{e}}\left(3 \pi^{2} \frac{\rho}{m}\right)^{2 / 3}=\frac{1}{3} \frac{\hbar^{2}}{m_{e}}\left(3 \pi^{2}\right)^{2 / 3}\left(\frac{\rho}{m}\right)^{5 / 3}$, where I've explicitly noted that the mass in the Fermi energy expression is the electron mass. Plugging in numbers in SI units, $B=\frac{\left(1.1 \times 10^{-34}\right)^{2}}{3 \times 9.1 \times 10^{-31}}\left(3 \pi^{2}\right)^{2 / 3}\left(\frac{8000}{64 \times 1.7 \times 10^{-27}}\right)^{5 / 3}=5.3 \times 10^{10} \quad \mathrm{~Pa}$. So the electron gas contributes about a third of the value of the bulk modulus of copper. (The rest is from the crystal lattice.)
4. A white dwarf star.
(a) assume $U_{g}=C^{\prime} M^{\alpha} R^{\beta} G^{\gamma}$ from dimensional analysis

$$
\begin{aligned}
& \quad M L^{2} T^{-2}=C^{\prime} M^{\alpha} L^{\beta} L^{3 \gamma} M^{-\gamma} T^{-2 \gamma} \\
& =C^{\prime} M^{\alpha-\gamma} L^{\beta+3 \gamma} T^{-2 \gamma} \\
& \therefore\left\{\begin{array} { l }
{ \alpha - \gamma = 1 } \\
{ \beta + 3 \gamma = 2 } \\
{ - 2 \gamma = - 2 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\alpha=2 \\
\beta=-1 \\
\gamma=1
\end{array}\right.\right. \\
& \therefore U_{g}=C^{\prime} \frac{G M^{2}}{R}
\end{aligned}
$$

the gravitational force pointed at the center of the white dwarf star, so if we remove mass from the star. We should do positive work.
so as M decreases, U_{g} increases. so there should be a negative sign.

$$
\therefore U g=-c \frac{G M^{2}}{R} .
$$

(b).

$$
\begin{aligned}
M & =N\left(m_{e}+2 m_{p}\right) \approx 2 N m_{p} \quad \therefore N=\frac{M}{2 m_{p}} \\
\therefore U & =\frac{3}{5} N \mu(0) \\
& =\frac{3}{5} N \cdot \frac{\hbar^{2}}{2 m_{e}}\left(\frac{3 \pi^{2} N}{V}\right)^{2 / 3} \\
& =\frac{3}{5} \cdot \frac{\hbar^{2}}{2 m_{e}} \cdot\left(3 \pi^{2}\right)^{2 / 3} \cdot N^{5 / 3} V^{-\frac{2}{3}} \\
& =\frac{3}{5} \frac{\hbar^{2}}{2 m_{e}}\left(3 \pi^{2}\right)^{2 / 3} \cdot\left(\frac{M}{2 m_{p}}\right)^{5 / 3} \cdot\left(\frac{4}{3} \pi R^{3}\right)^{-\frac{2}{3}} \\
& =\frac{3}{5} \cdot \frac{1}{2} \cdot\left(3 \pi^{2}\right)^{2 / 3} \cdot\left(\frac{1}{2}\right)^{5 / 3} \cdot\left(\frac{4}{3} \pi\right)^{-\frac{2}{3}} \cdot \frac{\hbar^{2} M^{5 / 3}}{m_{e} m_{p}^{5 / 3} R^{2}} \\
& =0,35 \frac{\hbar^{2} M^{5 / 3}}{m_{e} m_{p}^{5 / 3} R^{2}}
\end{aligned}
$$

(c)

$$
\text {). } \begin{aligned}
U & =U_{g}+U_{k} \\
& =-\frac{3}{5} \frac{G M^{2}}{R}+0.35 \frac{\hbar^{2} M^{5 / 3}}{m_{e} m_{p}^{5 / 3} R^{2}} \\
\frac{\partial U}{\partial R} & =\frac{3}{5} \frac{G M^{2}}{R^{2}}-0.7 \frac{\hbar^{2} M^{5 / 3}}{m_{e} m_{p}^{5 / 3} R^{3}}=0
\end{aligned}
$$

$\therefore \quad R_{0}=\frac{7 \hbar^{2}}{6 m e m_{p}^{5 / 3} G} M^{-\frac{1}{3}}$ is the equilibrium radius as mass increases. Rod decreases.
(d). $M=2.0 \times 10^{30} \mathrm{~kg}$.

$$
\begin{aligned}
& R_{0}=\frac{7 \hbar^{2}}{6 m e m_{p}^{5 / 3} G} M^{-1 / 3} \\
&=\frac{7 \times\left(1.05 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}{6 \times 9.1 \times 10^{-31} \mathrm{~kg} \times\left(1.7 \times 10^{-27} \mathrm{~kg}\right)^{5 / 3}\left(6.67 \times 10^{-11} \mathrm{~m}^{3} /(\mathrm{kgs} 2)\right)} \times\left(2.0 \times 10^{30} \mathrm{~kg}\right)^{-1 / 3} \\
&=6.9 \times 10^{6} \mathrm{~m} \\
& R_{0}=7.0 \times 10^{8} \mathrm{~m} \\
& \therefore R_{0} \approx \frac{R_{0}}{100} \\
& \rho=\frac{M}{V}=\frac{M}{\frac{4}{3} \pi R^{3}} \\
& \therefore P_{\text {was }} \approx 10^{6} P_{\theta}
\end{aligned}
$$

$$
\begin{aligned}
& \text { e } \\
& \text { ?) } \quad T_{F}=\frac{\mu(0)}{k_{B}} \\
& =\frac{\hbar^{2}}{2 m_{e}}\left(3 \pi^{2} n\right)^{2 / 3} \cdot \frac{1}{k_{B}} \\
& n=\frac{N}{V}=\frac{M}{2 m_{p} \frac{4}{3} \pi R_{0}^{3}}=\frac{3 M}{8 m_{p} \pi R_{0}^{3}} \\
& \therefore T_{F}=\frac{\hbar^{2}}{2 m_{e}}\left(3 \pi^{2} \cdot \frac{3 M}{8 m_{p} \pi R_{0}^{3}}\right)^{2 / 3} \cdot \frac{1}{k_{B}} \\
& =\frac{\hbar^{2}}{2 m_{e} k_{B}} \cdot\left(\frac{9 \pi M}{8 m_{p}}\right)^{2 / 3} \cdot \frac{1}{R_{0}^{2}} \\
& =\frac{\left(1.05 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2} \times\left(9 \times 3.14 \times 2.0 \times 10^{30} \mathrm{~g}\right)^{2 / 3}}{2 \times 9.1 \times 10^{-31} \mathrm{~kg} \times 1.38 \times 10^{-23} \mathrm{~J} \cdot \mathrm{~K}^{-1} \times\left(8 \times 1.7 \times 10^{-27} \mathrm{~kg}\right)^{2 / 3} \times\left(6.9 \times 10^{6} \mathrm{~m}\right)^{2}} \\
& =4.2 \times 10^{9} \mathrm{k} . \\
& T_{F}>25,000 \mathrm{~K} \\
& \text { so } T=0 \text { approximation is reasonable. }
\end{aligned}
$$

5. $U(\tau)$ for fermions. The derivation closely follows that of μ from the Sommerfeld expansion - see the handout. Start with the relation for U as an integral over the probability distribution:

$$
U=\int_{0}^{\infty} \varepsilon D(\varepsilon) f_{F D}(\varepsilon) d \varepsilon
$$

Continued on the next page.

$$
D(\varepsilon)=\frac{v}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \varepsilon^{1 / 2} \text { in } 3 D=D_{0} \varepsilon^{1 / 2}
$$

$D_{0}=\underbrace{2 \pi} \frac{3}{2} \frac{N}{\varepsilon_{F} 3 / 2}$ from earlier ε_{F} expuesoion
Integrate by parts : $u=f_{F D}, d u=\varepsilon^{3 / 2} d \varepsilon$

$$
\Rightarrow U=\underbrace{\left.\frac{2}{5} \underbrace{D_{0} \varepsilon^{5 / 2} f_{F D}(\varepsilon)}_{0}\right|_{0} ^{\infty}+\frac{2}{5} D_{0} \int_{0}^{\infty} \varepsilon^{5 / 2}\left(-\frac{d f_{F D}}{d \varepsilon}\right) d \varepsilon}_{0 \text { at } 6 \text { th } \operatorname{lin}} \text { nefigibl except near } \mu
$$

As before, $-\frac{d}{d \varepsilon} f_{F D}=\frac{1}{c} \frac{e^{x}}{\left(e^{x}+1\right)^{2}}$, where $x=\frac{\varepsilon-\mu}{2}$.

$$
\Rightarrow u=\frac{2}{5} D_{0} \int_{0}^{\infty} \frac{1}{2} \frac{e^{x}}{\left(e^{x}+1\right)^{2}} \varepsilon^{5 / 2} d \varepsilon=\frac{2}{5} D_{0} \int_{-\mu / 2}^{\infty} \frac{e^{x}}{\left(e^{x}+1\right)^{2}} \varepsilon^{5 / 2} d x
$$

Approx: - lower limit $\rightarrow-\infty$ (as in class)

- expand $\varepsilon^{5 / 2}$ around $\varepsilon=\mu \cdots \cdots$

$$
\begin{aligned}
\varepsilon^{5 / 2} & =\mu^{5 / 2}+\left.(\varepsilon-\mu) \frac{d}{d \varepsilon} \varepsilon^{5 / 2}\right|_{\varepsilon=\mu}+\left.\frac{1}{2}(\varepsilon-\mu)^{2} \frac{d^{2}}{d \varepsilon^{2}} \varepsilon^{5 / 2}\right|_{\varepsilon=\mu}+\cdots \\
& =\mu^{5 / 2}+\frac{5}{2}(\varepsilon-\mu) \mu^{3 / 2}+\frac{15}{8}(\varepsilon-\mu)^{2} \mu^{1 / 2}+\cdots \\
\Rightarrow U & =\frac{2}{5} D_{0} \int_{-\infty}^{\infty} \frac{e^{x}}{\left(e^{x}+1\right)^{2}}\left[\mu^{5 / 2}+\frac{5}{2} \times r \mu^{3 / 2}+\frac{15}{8}(x r)^{2} \mu^{1 / 2}+\ldots\right] d x
\end{aligned}
$$

Integrate each term.
Term 1: Dario. of $f_{F D}: \int_{-\infty}^{\infty} \frac{e^{x}}{\left(e^{x}+1\right)^{2}} d x=\int_{-\infty}^{\infty}-\frac{d f_{F D}}{d \varepsilon} d \varepsilon=\left.f_{F D}\right|_{\infty} ^{-\infty}=1$
Term 2: as in class, integrand is an odd function of x so $\int=0$.
Term 3: As in class, $\int \frac{x^{2} e^{x}}{\left(e^{x}+1\right)^{2}} d x=\frac{\pi^{2}}{3}$ the same integral we saw earlier

$$
\begin{array}{ll}
\Rightarrow U=\frac{2}{5} D_{0} \mu^{5 / 2}+\frac{2}{5} D_{0} \frac{15}{8} r^{2} \mu^{1 / 2} \frac{\pi^{2}}{3} \quad \text { Use } D_{0} \\
=\frac{3}{2} \frac{N}{\varepsilon_{f}^{3 / 2}} \\
\Rightarrow U=\frac{3}{5} N \frac{\mu^{5 / 2}}{\varepsilon_{f}} 3 / 2+\frac{3 \pi^{2}}{8} N r^{2} \frac{\mu^{1 / 2}}{\varepsilon_{F}^{3 / 2}}
\end{array}
$$

Using $\frac{\mu}{\varepsilon_{F}}=1-\frac{\pi^{2}}{12}\left(\frac{\tau}{\varepsilon_{p}}\right)^{2}+\cdots \quad \frac{\text { see handout) }}{\hbar}$ keping terms to $\left(\frac{\tau}{\varepsilon_{f}}\right)^{2}$

$$
\begin{aligned}
u & =\frac{3}{5} N \varepsilon_{F}\left(\frac{\mu}{\varepsilon_{F}}\right)^{512}+\frac{3 \pi^{2}}{8} N r^{2} \frac{1}{\varepsilon^{2}}\left(\frac{\mu}{\varepsilon_{F}}\right)^{1 / 2} \\
& =\frac{3}{5} N \varepsilon_{F}\left[1-\frac{5}{2} \frac{\pi^{2}}{12}\left(\frac{\tau}{\varepsilon_{F}}\right)^{2}+\cdots\right]+\frac{3 \pi^{2}}{8} N \frac{N r^{2}}{\varepsilon_{F}}\left[1-\frac{1}{2} \frac{\pi^{2}}{12}\left(\frac{\pi}{\varepsilon_{F}}\right)^{2}+\cdots\right]
\end{aligned}
$$

The product of these two terms is proportional to $\left(\frac{2}{\varepsilon_{f}}\right)^{4}$ and so is negligible.

$$
=U=\frac{3}{5} N \varepsilon_{F}+N \varepsilon_{F}\left(\frac{r}{\varepsilon_{f}}\right)^{2}\left[-\frac{\pi^{2}}{8}+\frac{3 \pi^{2}}{8}\right]+()\left(\frac{\pi}{\varepsilon_{f}}\right)^{4}=u=\frac{3}{5} N \varepsilon_{F}+\frac{\pi^{2}}{4} N \frac{\frac{2}{}^{2}}{\varepsilon_{f}} .
$$

