
Prof. Raghuveer Parthasarathy 
University of Oregon; Spring 2008 

 
Physics 353:  Problem Set 8 

 
Due date:  Wednesday, June 4, 5pm.  No late homework will be accepted. 
Reading:  Kittel & Kroemer Chapter 10 
Comments:  Only part of this problem set will be graded – you need not turn in the rest. 
 

---------------   GRADED PROBLEMS   --------------- 
 
1, 7 pts.  Mean field Ising magnet revisited.  Consider an Ising Magnet in a magnetic field, B , such that 
the energy of spin i  is i i i

j
jE JsB ssλ ∑= − − .  The sum 

j
∑  is over the nearest neighbors of the spin. 

a, 1 pt.  Show that for 1x , 3tanh / 3.x xx ≈ −   (Recall the properties of hyperbolic functions, e.g. 

cosh sinhd x x
dx

= , etc., that follow from their definitions, ( )1cosh
2

x xex e −= + , etc.) 

b, 3 pts.  Consider 0B = .  Find an expression for the spontaneous magnetization of the mean-field Ising 
model, s , when the temperature is close to the critical temperature – in other words, when s  is 

small.  Make use of your answer to (a).  You should find that ( )cs βτ τ∝ − , where β  is a 

number, known as a critical exponent.  Determine β .  For real 3D magnets, 1/ 3β ≈  -- smaller than 
the value you’ll find is predicted by mean field theory. 

c, 3 pts.  The magnetic susceptibility 
s
B

χ
∂

=
∂

.  (Actually, χ  is defined as 
M
B

χ ∂
=
∂

, where M  includes 

the constants that relate s  to the magnetic moment, but this doesn’t change anything important.)  Near 
the critical temperature, derive an expression for χ .  You should find that mean-field theory predicts 

( )C
γχ τ τ −∝ − .  Determine γ .  Real 3D magnets display this “power law” dependence of χ  on 

temperature, but with 1.24γ ≈  rather than the value you’ll find. 
 
 
 
2, 6 pts.  Miscibility transition.  We’ll consider a model of a miscibility transition.  Consider two 
components, with an entropy of mixing as calculated in Problem Set 7.  The total number of particles is N ; 
xN  are species A and ( )1 x N−  are species B.  It costs energy to keep A and B next to each other. 
a, 1 pt.  A simple but reasonable form we might come up with for an interaction energy function is one that 

is 0 at 0x =  and 1x = , that is maximal at 1/ 2x =  with a value 0NU , that is symmetric about 
1/ 2x = , and that is a quadratic function of x .  In other words, there’s an energetic cost of mixing 

that’s maximal for the most-mixed ( 1/ 2x = ) state, and proportional to the total number of particles.  
Write the function ( )U x . 

b, 5 pts.  Write an expression for the Helmholtz Free Energy, F , as a function of x .  As noted in class, the 
mixture phase-separates if ( )F x  is concave-down (i.e. its second derivative is negative).  For simplicity, 
just consider the shape of ( )F x  at 1/ 2x = .  Determine the critical temperature below which the 
mixture phase-separates. 



 
3, 4 pts.  Clausius-Clapeyron relation.  The density of ice is 917 kg / m3.  The density of water is 
1000 kg/m3.  At 1 atmosphere of pressure, ice melts at 0 °C.  The latent heat of melting is 334 kJ/kg. 
a, 1 pt.  How much pressure must you apply to make ice melt at -1 °C? 
b, 1 pt.  Consider a glacier at 0 °C.  At its base, the weight of the ice presses down; the pressure 

lowers the melting temperature.  Approximately how deep would a glacier have to be for its 
weight to supply the pressure you calculated in part (a)?  (Glaciers can in fact slide on pressure-
induced water layers – this mechanism is known as basal sliding.) 

c, 2 pts.  Some people claim that ice skating works because the pressure under the blade of an ice 
skate lowers the melting temperature of the ice below the ambient temperature.  Perform a 
numerical estimate and comment on whether this seems plausible. 

 
 

---------------   UNGRADED PROBLEMS   --------------- 
 
 
4   The one-dimensional Ising model.  We can exactly solve the one-dimensional Ising model.  
Consider N  spins, each of which can be up ( 1s = + ) or down ( 1s = − ).  The total energy is 

i j
ij

sE J s∑= − , so ( )1 2 2 3 3 4 1... N Ns s s sE J s s s s−+ + + += − .  The partition function is therefore 

( ) ( ) ( )
1 2

1 2 2 3 1
1, 1 1, 1 1, 1

... exp exp ...exp
Ns s s

N NZ s s sJ s J s J sβ β β −
=+ − =+ − =+ −
∑ ∑ ∑=  where each sum involves 

two possible values of s , and with 1/β τ≡ . 
a.  Show that the last sum ( )1exp N

N
NsJ sβ −∑ = ( )2cosh Jβ , regardless of the value of 1Ns − . 

b.  Similarly sum all the other sums, up to 
2s
∑ . 

c.  Sum the remaining sum over 1s  to show that ( ) 1
2 cosh

NNZ Jβ
−

⎡ ⎤= ⎣ ⎦ .  Since 1N N− ≈  for large 

N, this gives ( )2cosh
N

JZ β⎡ ⎤⎣ ⎦≈ , with 1/β τ≡ . 
d.  Calculate U  from Z  (as we did routinely in 352).  Are there any discontinuities or cusps in 

)(U τ ?  Hopefully you’ll find nothing interesting – no phase transition in one dimension. 
 
 
5  Free energy of the mean field Ising model.  In class we considered the mean-field Ising model 
from the perspective of the Helmholtz Free Energy.  We found that ( )U s  is a parabolic function of 
s , and used our earlier expression for the entropy ( )sσ  that is also a parabolic function of s .  This 
yielded a phase transition, but a somewhat nonsensical one, as F  was minimized either at 0s =  or 
s = ±∞ , not anywhere in between.  The problem was ( )sσ  -- our earlier expression was only valid 
for small s  (recall its derivation).  Let’s take the next step to correct this.  Consider 

2 41( ) ln 2
2

s NN N s saσ −= −  -- i.e. throw in a fourth-order term with some coefficient a .  

Calculate s  as a function of temperature at zero magnetic field.  Show that it is zero above a 
critical temperature and rises smoothly from zero as τ  drops below Cτ . 


