Prof. Raghuveer Parthasarathy

University of Oregon; Spring 2008

Physics 353: Problem Set 8

Due date: Wednesday, June 4, 5pm. No late homework will be accepted.
Reading: Kittel \& Kroemer Chapter 10
Comments: Only part of this problem set will be graded - you need not turn in the rest.
Graded Problems

1, 7 pts. Mean field Ising magnet revisited. Consider an Ising Magnet in a magnetic field, B, such that the energy of spin i is $E_{i}=-\lambda B s_{i}-J s_{i} \sum_{j} s_{j}$. The sum \sum_{j} is over the nearest neighbors of the spin.
a, 1 pt. Show that for $x \ll 1$, $\tanh x \approx x-x^{3} / 3$. (Recall the properties of hyperbolic functions, e.g. $\frac{d}{d x} \cosh x=\sinh x$, etc., that follow from their definitions, $\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)$, etc. $)$
$\mathbf{b}, 3$ pts. Consider $B=0$. Find an expression for the spontaneous magnetization of the mean-field Ising model, $\langle s\rangle$, when the temperature is close to the critical temperature - in other words, when $\langle s\rangle$ is small. Make use of your answer to (a). You should find that $\langle s\rangle \propto\left(\tau_{c}-\tau\right)^{\beta}$, where β is a number, known as a critical exponent. Determine β. For real 3D magnets, $\beta \approx 1 / 3$-- smaller than the value you'll find is predicted by mean field theory.
c, 3 pts. The magnetic susceptibility $\chi=\frac{\partial\langle s\rangle}{\partial B}$. (Actually, χ is defined as $\chi=\frac{\partial M}{\partial B}$, where M includes the constants that relate S to the magnetic moment, but this doesn't change anything important.) Near the critical temperature, derive an expression for χ. You should find that mean-field theory predicts $\chi \propto\left(\tau-\tau_{C}\right)^{-\gamma}$. Determine γ. Real 3D magnets display this "power law" dependence of χ on temperature, but with $\gamma \approx 1.24$ rather than the value you'll find.

2, 6 pts. Miscibility transition. We'll consider a model of a miscibility transition. Consider two components, with an entropy of mixing as calculated in Problem Set 7. The total number of particles is N; $x N$ are species A and $(1-x) N$ are species B . It costs energy to keep A and B next to each other.
a, 1 pt. A simple but reasonable form we might come up with for an interaction energy function is one that is 0 at $x=0$ and $x=1$, that is maximal at $x=1 / 2$ with a value $N U_{0}$, that is symmetric about $x=1 / 2$, and that is a quadratic function of x. In other words, there's an energetic cost of mixing that's maximal for the most-mixed $(x=1 / 2)$ state, and proportional to the total number of particles. Write the function $U(x)$.
b, 5 pts. Write an expression for the Helmholtz Free Energy, F, as a function of x. As noted in class, the mixture phase-separates if $F(x)$ is concave-down (i.e. its second derivative is negative). For simplicity, just consider the shape of $F(x)$ at $x=1 / 2$. Determine the critical temperature below which the mixture phase-separates.

3, 4 pts. Clausius-Clapeyron relation. The density of ice is $917 \mathrm{~kg} / \mathrm{m}^{3}$. The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. At 1 atmosphere of pressure, ice melts at $0^{\circ} \mathrm{C}$. The latent heat of melting is $334 \mathrm{~kJ} / \mathrm{kg}$. a, 1 pt. How much pressure must you apply to make ice melt at $-1^{\circ} \mathrm{C}$?
b, 1 pt. Consider a glacier at $0^{\circ} \mathrm{C}$. At its base, the weight of the ice presses down; the pressure lowers the melting temperature. Approximately how deep would a glacier have to be for its weight to supply the pressure you calculated in part (a)? (Glaciers can in fact slide on pressureinduced water layers - this mechanism is known as basal sliding.)
c, 2 pts. Some people claim that ice skating works because the pressure under the blade of an ice skate lowers the melting temperature of the ice below the ambient temperature. Perform a numerical estimate and comment on whether this seems plausible.

--------------- UNGRADED PROBLEMS ---------------

4 The one-dimensional Ising model. We can exactly solve the one-dimensional Ising model. Consider N spins, each of which can be up $(s=+1)$ or down $(s=-1)$. The total energy is $E=-J \sum_{i j} s_{i} s_{j}$, so $E=-J\left(s_{1} s_{2}+s_{2} s_{3}+s_{3} s_{4}+\ldots+s_{N-1} s_{N}\right)$. The partition function is therefore $Z=\sum_{s_{1}=+1,-1} \sum_{s_{2}=+1,-1} \ldots \sum_{s_{N}=+1,-1} \exp \left(\beta J s_{1} s_{2}\right) \exp \left(\beta J s_{2} s_{3}\right) \ldots \exp \left(\beta J s_{N-1} s_{N}\right)$ where each sum involves two possible values of s, and with $\beta \equiv 1 / \tau$.
a. Show that the last sum $\sum_{N} \exp \left(\beta J s_{N-1} s_{N}\right)=2 \cosh (\beta J)$, regardless of the value of s_{N-1}.
b. Similarly sum all the other sums, up to $\sum_{s_{2}}$.
c. Sum the remaining sum over s_{1} to show that $Z=2^{N}[\cosh (\beta J)]^{N-1}$. Since $N-1 \approx N$ for large N , this gives $Z \approx[2 \cosh (\beta J)]^{N}$, with $\beta \equiv 1 / \tau$.
d. Calculate U from Z (as we did routinely in 352). Are there any discontinuities or cusps in $U(\tau)$? Hopefully you'll find nothing interesting - no phase transition in one dimension.

5 Free energy of the mean field Ising model. In class we considered the mean-field Ising model from the perspective of the Helmholtz Free Energy. We found that $U(s)$ is a parabolic function of s, and used our earlier expression for the entropy $\sigma(s)$ that is also a parabolic function of s. This yielded a phase transition, but a somewhat nonsensical one, as F was minimized either at $s=0$ or $s= \pm \infty$, not anywhere in between. The problem was $\sigma(s)$-- our earlier expression was only valid for small s (recall its derivation). Let's take the next step to correct this. Consider $\sigma(s)=N \ln 2-\frac{1}{2} N\langle s\rangle^{2}-a N\langle s\rangle^{4}$-- i.e. throw in a fourth-order term with some coefficient a. Calculate $\langle s\rangle$ as a function of temperature at zero magnetic field. Show that it is zero above a critical temperature and rises smoothly from zero as τ drops below τ_{C}.

