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Physics 353:  Problem Set 8 – SOLUTIONS 
 
 
 
1  Mean field Ising magnet revisited.   
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Noting that tanh(0) 0=  and sech(0) 1= , 
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b.  From our examination of the mean field Ising model: 

tanh tanhn CJNs s sτ
τ τ

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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factor changes sharply with t , like 1/2t . 
 
 



c.  Considering nonzero magnetic field.   In the mean field treatment,  

( )i i i iE Js s B JBs s sλ λ= − − = − + .  Note that the magnetic field just adds a term that 

“combines” with our coupling factor.  Therefore the solution to s  is simply 

tanh tanhn CB BJN s s
s

λ τ λ
τ τ

⎛ ⎞ ⎛ ⎞+ +
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
.     I’ll write two solutions.  

Approach 1:  Again considering small s  and B  near the critical point,  
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Approach 2:  Avoiding Taylor expansion.  From above ( )( )tanh /C Bs sτ λ τ= + .  Differentiate: 
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2  Miscibility transition. 

  
 
 
 



3  Clausius-Clapeyron relation.   

a.  Melting ice at -1 °C.  
v
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, where L  is the latent heat per particle and vΔ  is the volume 

change per particle.    We need to understand all the variables and convert them to appropriate 
units.  Note that dT , one degree, is much smaller than T , 273 K, so we can write that the 

increase in pressure P
v
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A long route:  The density of water is 1000 kg/m3, and each water molecule is 2718 1.67 10−× ×  kg = 
2613. 1 00 −×  kg, so the volume per water molecule is 26 293.01 /1000 3.0110 10− −×=× m3.  

Similarly the volume per ice molecule is 26 293.0 / 917 3.2810 10− −×=×  m3, so 290.27 10v −Δ = − ×  
m3.  L  = 334 kJ/kg in units of heat per unit mass.  Per particle, L  is therefore 
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More succinctly:  write ρ =density, m  = mass of a water molecule, so volume per particle 
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The latent heat in units of energy is '/L L m= , where 'L  is the latent heat in the given units of 

energy / mass.  Therefore:  
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Therefore:  to lower the melting temperature by one degree, you’d need to apply 13.7 million 
Pascal of pressure above normal atmospheric pressure (about 510  Pa). 

 
b.  Consider a glacier... Using part (a), we need a pressure of 13.7 million Pascal.  This pressure is 

provided by the weight of the ice gAhρ , where ρ  is the density and h  is the height, divided by 
its area A .  Using ρ  from above, we therefore need 7/ 1.37 Pa/K10gAh A ghρ ρ= = × , so 

31.53 10h ×=  meters, or about one-and-a-half kilometers. 
 
c.   A 50 kg person skating on an ice skate with a blade with dimensions around 20 cm x 0.1 mm 

applies a pressure of 712 5 a0. P× .  This is certainly enough to lower the melting temperature of 

ice by 1 degree.  Applying 71.37 10dP Pa
d KT

×= −  from above, it will lower the melting 

temperature by about 2 °C.  However, one can (and usually does) ice skate at temperatures 
considerably lower than -2 °C.  When skating on -10 °C ice it doesn’t matter that your weight 
makes the melting temperature -2 °C – the ice is still solid!  Ice skating is not made possible by 
the Clausius-Clapeyron relation, but rather by heat generated by friction. 



4   The one-dimensional Ising model. 

 

 
 



5  Free energy of the mean field Ising model.   

 
  


