Prof. Raghuveer Parthasarathy
University of Oregon; Spring 2008

Physics 353: Problem Set 8 - SOLIIONS

1 Mean field Ising magnet revisited.

a.
$\tanh x=\tanh 0+\left.\frac{d}{d x} \tanh x\right|_{x=0} x+\left.\frac{1}{2} \frac{d^{2}}{d^{2} x} \tanh x\right|_{x=0} x^{2}+\left.\frac{1}{6} \frac{d^{3}}{d^{3} x} \tanh x\right|_{x=0} x^{3}+\ldots$, , Taylor expanding about $x=0$.
$\frac{d}{d x} \tanh x=\operatorname{sech}^{2} x$ (i.e. $\frac{1}{\cosh ^{2} x}$)
$\frac{d^{2}}{d^{2} x} \tanh x=\frac{d}{d x} \frac{1}{\cosh ^{2} x}=-2 \frac{1}{\cosh ^{3} x} \sinh x=-2 \tanh x \operatorname{sech}^{2} x$
$\frac{d^{3}}{d^{3} x} \tanh x=-2 \operatorname{sech}^{2} x \frac{d}{d x} \tanh x+-2 \tanh x \frac{d}{d x} \operatorname{sech}^{2} x=-2 \operatorname{sech}^{4} x+4 \tanh ^{2} x \operatorname{sech}^{2} x$
Noting that $\tanh (0)=0$ and $\operatorname{sech}(0)=1$,
$\tanh x=0+1 x+0 x^{2}+\frac{1}{6}(-2) x^{3}+\ldots$
$\tanh x \approx x+\frac{1}{3} x^{3}$.
b. From our examination of the mean field Ising model:
$\langle s\rangle=\tanh \left(\frac{J N_{n}}{\tau}\langle s\rangle\right)=\tanh \left(\frac{\tau_{C}}{\tau}\langle s\rangle\right)$, using $\tau_{C}=J N_{n}$. Near the phase transition, $\langle s\rangle$ is small.
Therefore $\langle s\rangle \approx\left(\frac{\tau_{C}}{\tau}\langle s\rangle\right)-\frac{1}{3}\left(\frac{\tau_{C}}{\tau}\langle s\rangle\right)^{3}$.
$1 \approx \frac{\tau_{C}}{\tau}-\frac{1}{3}\left(\frac{\tau_{C}}{\tau}\right)^{3}\langle s\rangle^{2}$, so $\langle s\rangle \approx\left[3\left(\frac{\tau}{\tau_{C}}\right)^{3}\left(\frac{\tau_{C}}{\tau}-1\right)\right]^{1 / 2}$, and so $\langle s\rangle \approx\left[3\left(\frac{\tau}{\tau_{C}}\right)^{2}\left(\frac{\tau_{C}-\tau}{\tau_{C}}\right)\right]^{1 / 2}$. We see that $\langle s\rangle \propto\left(\tau_{C}-\tau\right)^{1 / 2}$, i.e. the critical exponent $\beta=1 / 2$.
(In case you're worried about the other factors of τ, try writing $t \equiv \tau_{C}-\tau$, with which $\langle s\rangle \approx \sqrt{3}\left(1-\frac{t}{\tau_{C}}\right)\left(\frac{t}{\tau_{C}}\right)^{1 / 2}$. For τ close to τ_{C}, the first factor is just something near 1. The second factor changes sharply with t, like $t^{1 / 2}$.
c. Considering nonzero magnetic field. In the mean field treatment,
$E_{i}=-\lambda B s_{i}-J s_{i}\langle s\rangle=-(\lambda B+J\langle s\rangle) s_{i}$. Note that the magnetic field just adds a term that "combines" with our coupling factor. Therefore the solution to $\langle s\rangle$ is simply
$\langle s\rangle=\tanh \left(\frac{J N_{n}\langle s\rangle+\lambda B}{\tau}\right)=\tanh \left(\frac{\tau_{C}\langle s\rangle+\lambda B}{\tau}\right) . \quad$ I'll write two solutions.
Approach 1: Again considering small $\langle s\rangle$ and B near the critical point,
$\langle s\rangle \approx\left(\left(\tau_{C}\langle s\rangle+\lambda B\right) / \tau\right)-\frac{1}{3}\left(\left(\tau_{C}\langle s\rangle+\lambda B\right) / \tau\right)^{3}$. Differentiating both sides with respect to B,
$\chi=\frac{d\langle s\rangle}{d B}=\left(\frac{\tau_{C}}{\tau} \chi+\frac{\lambda}{\tau}\right)-\left(\frac{\tau_{C}\langle s\rangle+\lambda B}{\tau}\right)^{2}\left(\frac{\tau_{C}}{\tau} \chi+\frac{\lambda}{\tau}\right)($ Chain rule ! $)$
Evaluating this as $B \rightarrow 0$ and $\langle s\rangle \rightarrow 0, \chi=\frac{\tau_{C}}{\tau} \chi+\frac{\lambda}{\tau}$, so $\chi=\frac{\lambda}{\tau-\tau_{C}}$.
We see that $\chi=\frac{d\langle S\rangle}{d B} \propto\left(\tau-\tau_{C}\right)^{-\gamma}$ with $\gamma=1$.
Approach 2: Avoiding Taylor expansion. From above $\langle s\rangle=\tanh \left(\left(\tau_{C}\langle s\rangle+\lambda B\right) / \tau\right)$. Differentiate:
$\chi=\frac{d\langle s\rangle}{d B}=\operatorname{sech}^{2}\left(\left(\tau_{C}\langle s\rangle+\lambda B\right) / \tau\right)\left[\frac{\tau_{C}}{\tau} \chi+\frac{\lambda}{\tau}\right]$ (Again, Chain rule !). Evaluate as $B \rightarrow 0$ and $\langle s\rangle \rightarrow 0$, noting that $\operatorname{sech}^{2}(0)=1$:
$\chi=1\left[\frac{\tau_{C}}{\tau} \chi+\frac{\lambda}{\tau}\right]$, so $\chi\left(1-\frac{\tau_{C}}{\tau}\right)=\frac{\lambda}{\tau}$, and therefore $\chi=\frac{\lambda}{\tau-\tau_{C}}$.
We see that $\chi=\frac{d\langle s\rangle}{d B} \propto\left(\tau-\tau_{C}\right)^{-\gamma}$ with $\gamma=1$.

2 Miscibility transition.

$$
u(x)=0 \text { \& } x=0,1 ; u(x)=u_{0} N Q \quad x=1 / 2
$$

parabolic, centered (a) $x=\frac{1}{2}$, concave down

$$
\begin{aligned}
\Rightarrow u(x) & =4 u_{0}\left\lfloor-\left(x-\frac{1}{2}\right)^{2}+\frac{1}{4}\right\rfloor N \\
\quad u(x) & =N u_{0}\left(1-4\left(x-\frac{1}{2}\right)^{2}\right) . \\
& \quad x=0 \Rightarrow u=0, \quad x=1 \Rightarrow u=0, x=\frac{1}{2} \Rightarrow u=u_{0} N
\end{aligned}
$$

Entropy of mixing $\delta_{\text {mix }}=-N[x \ln x+(1-x) \ln (1-x)]$
Free energy $F \equiv u-\tau \sigma$

$$
F=N u_{0}\left[1-4\left(x-\frac{1}{2}\right)^{2}\right]+\tau N[x \ln x+(1-x) \ln (1-x)]
$$

Plot

Phase-separation if $F(x)$ is concave-down, i.e. $\frac{d^{2}}{d x^{2}}<0$

$$
\begin{aligned}
\frac{d F}{d x} & =N u_{0}\left[-8\left(x-\frac{1}{2}\right)\right]+\tau N[1+\ln x+-1-\ln (1-x)] \\
& =N u_{0}[-8 x+4]+\tau N\left[\ln \left(\frac{x}{1-x}\right)\right] \\
\frac{d^{2} F}{d x^{2}} & =N u_{0}(-8)+\tau N\left(\left(\frac{1-x}{x}\right)\left(\frac{+x}{(1-x)^{2}}+\left(\frac{1}{1-x}\right)\right)\right. \\
& =-8 N u_{0}+\tau N\left[\frac{+1}{1-x}+\frac{1}{x}\right] \\
& =-8 N u_{0}+\tau N \frac{(1)}{x(1-x)}
\end{aligned}
$$

just consider $x=1 / 2$

$$
\left.\frac{d^{2} F}{d x^{2}}\right|_{x=1 / 2}=-8 N U_{0}+\left.\frac{N r}{x(1-x)}\right|_{x=1 / 2}=-8 N U_{0}+4 N \tau .
$$

If $-8 N U_{0}+4 N z \begin{cases}<0, & \text { phase sep. } \\ >0, & \text { miscible (mixed) }\end{cases}$
\Rightarrow phase sep. for $-2 u_{0}+\tau<0 \Rightarrow\left(\tau<2 u_{0}\right.$ critical temperature $\tau_{c}=2 U_{0}$

3 Clausius-Clapeyron relation.

a. Melting ice at $-1{ }^{\circ} \mathrm{C} . \frac{d P}{d \tau}=\frac{L}{\tau \Delta v}$, where L is the latent heat per particle and Δv is the volume change per particle. We need to understand all the variables and convert them to appropriate units. Note that $d T$, one degree, is much smaller than $T, 273 \mathrm{~K}$, so we can write that the increase in pressure $d P=\frac{L}{\Delta v} \frac{d \tau}{\tau}$.
A long route: The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$, and each water molecule is $18 \times 1.67 \times 10^{-27} \mathrm{~kg}=$ $3.01 \times 10^{-26} \mathrm{~kg}$, so the volume per water molecule is $3.01 \times 10^{-26} / 1000=3.01 \times 10^{-29} \mathrm{~m}^{3}$. Similarly the volume per ice molecule is $3.0 \times 10^{-26} / 917=3.28 \times 10^{-29} \mathrm{~m}^{3}$, so $\Delta v=-0.27 \times 10^{-29}$ m^{3}. $L=334 \mathrm{~kJ} / \mathrm{kg}$ in units of heat per unit mass. Per particle, L is therefore $334 \times 10^{3} \times 3.01 \times 10^{-26}=1.01 \times 10^{-20} \mathrm{~J}$. The temperature $\tau=k_{B} \times 273 \mathrm{~K}=3.77 \times 10^{-21} \mathrm{~J}$. Therefore $\frac{d P}{d \tau}=\frac{1.01 \times 10^{-20}}{3.77 \times 10^{-21}\left(-0.27 \times 10^{-29}\right)}=-9.92 \times 10^{29} \frac{\mathrm{~Pa}}{\mathrm{~J}}$. In conventional temperature units, multiplying by Boltzmann's constant, $\frac{d P}{d T}=-1.37 \times 10^{7} \frac{P a}{K}$.
More succinctly: write $\rho=$ density, $m=$ mass of a water molecule, so volume per particle $v=(\rho / m)^{-1}$, i.e. $1 /$ concentration. $\quad \Delta v=\frac{m}{\rho_{\text {water }}}-\frac{m}{\rho_{\text {ice }}}=m\left(\frac{1}{\rho_{\text {water }}}-\frac{1}{\rho_{\text {ice }}}\right)=m\left(\frac{\rho_{\text {ice }}-\rho_{\text {water }}}{\rho_{\text {water }} \rho_{\text {ice }}}\right)$. The latent heat in units of energy is $L=L^{\prime} / m$, where L^{\prime} is the latent heat in the given units of energy / mass. Therefore: $d P=\frac{L}{\Delta v} \frac{d \tau}{\tau}=\frac{d T}{T} \frac{L}{\Delta v}=\frac{d T}{T} \frac{L^{\prime} \rho_{\text {water }} \rho_{i c e}}{\left(\rho_{i c e}-\rho_{\text {water }}\right)}$. Note that the m 's and k_{B} 's cancel! Plugging in numbers (SI units): $d P=\frac{-1}{273} \frac{334 \times 10^{3} \times 917 \times 1000}{(917-1000)}=1.35 \times 10^{7} \mathrm{~Pa}$.
Therefore: to lower the melting temperature by one degree, you'd need to apply 13.7 million Pascal of pressure above normal atmospheric pressure (about $10^{5} \mathrm{~Pa}$).
b. Consider a glacier... Using part (a), we need a pressure of 13.7 million Pascal. This pressure is provided by the weight of the ice $\rho g A h$, where ρ is the density and h is the height, divided by its area A. Using ρ from above, we therefore need $\rho g A h / A=\rho g h=1.37 \times 10^{7} \mathrm{~Pa} / \mathrm{K}$, so $h=1.53 \times 10^{3}$ meters, or about one-and-a-half kilometers.
c. A 50 kg person skating on an ice skate with a blade with dimensions around $20 \mathrm{~cm} \times 0.1 \mathrm{~mm}$ applies a pressure of $2.5 \times 10^{7} \mathrm{~Pa}$. This is certainly enough to lower the melting temperature of ice by 1 degree. Applying $\frac{d P}{d T}=-1.37 \times 10^{7} \frac{P a}{K}$ from above, it will lower the melting temperature by about $2{ }^{\circ} \mathrm{C}$. However, one can (and usually does) ice skate at temperatures considerably lower than $-2{ }^{\circ} \mathrm{C}$. When skating on $-10^{\circ} \mathrm{C}$ ice it doesn't matter that your weight makes the melting temperature $-2^{\circ} \mathrm{C}$ - the ice is still solid! Ice skating is not made possible by the Clausius-Clapeyron relation, but rather by heat generated by friction.

4 The one-dimensional Using model.

$$
\text { a) } \begin{aligned}
& \sum_{N} e^{\beta J S_{N-1} S_{N}} \\
= & e^{\beta J S_{N-1}}+e^{-\beta J S_{N-1}}
\end{aligned}
$$

if $S_{N-1}=1$, then $\sum_{S_{N}} e^{\beta J S_{N-1} S_{N}}=e^{\beta J}+e^{-\beta J}=2 \cosh (\beta J)$
if $S_{N-1}=-1$, then $\sum_{S_{N}} e^{\beta J S_{N-1} S_{N}}=e^{-\beta J}+e^{\beta J}=2 \cosh (\beta J)$
(b).

$$
\begin{aligned}
& \sum_{S_{2}= \pm 1} \sum_{S_{3}= \pm 1} \cdots \sum_{S_{N}= \pm 1} e^{\beta J S_{1} S_{2}} e^{\beta J S_{2} S_{3} \cdots e^{\beta J S_{N-T} S_{N}}} \\
= & 2 \cosh (\beta J) \sum_{S_{2} \pm 1} \cdots \sum_{S_{N}= \pm 1} e^{\beta J S_{1} S_{2}} \cdots e^{\beta J S_{N-2} S_{N-1}} \\
= & (2 \cosh (\beta J))^{2} \sum_{S_{2}= \pm 1} \cdots \sum_{S_{N+2}= \pm 1} e^{\beta J S_{1} S_{2}} \cdots e^{\beta J S_{N-3} S_{N-2}} \\
= & (2 \cosh (\beta J))^{N-1}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\therefore z & =\sum_{S_{1}= \pm 1}\left(\sum_{S_{i=1}} \cdots \sum_{S_{N}= \pm 1} e^{\beta J S_{1} S_{2}} e^{\beta J S_{2} S_{3}} \cdots e^{\beta J S_{N-1} S_{1}}\right) \\
& =\sum_{S_{1} \pm 1} 2^{N-1}[\cosh (\beta J)]^{N-1} \\
& =2^{N}[\cosh (\beta J)]^{N-1}
\end{aligned}
$$

for large $N, \quad N-1 \approx N$

$$
\therefore \quad Z \approx[2 \cosh (\beta J)]^{N .}
$$

(d)

$$
\begin{aligned}
U=-\frac{\partial}{\partial \beta} \ln z & =-\frac{\partial}{\partial \beta}(N(\ln 2+\ln \cosh (\beta J))) \\
& =-N \frac{\partial}{\partial \beta}[\ln \cosh (\beta J)] \\
& =+N J \frac{e^{\beta J}-e^{-\beta J}}{e^{\beta J}+e^{-\beta J}}=N J \tanh (\beta J)
\end{aligned}
$$

It's a continuous function, so there is no phase transition in one dimension.

5 Free energy of the mean field Using model.
From class, $U(\langle s\rangle)=-\frac{N}{2} J N_{n}\langle s\rangle^{2}$

$$
\begin{aligned}
& \sigma(s)=\left.N \ln 2-\frac{N}{2}\langle s\rangle^{2}-a N k s\right\rangle^{4} \\
& F(s)= F \equiv u-\tau \sigma \\
& \frac{\partial F}{\partial s}= \frac{N}{2}\left\{\left(-J N_{n}+\tau\right)\langle s\rangle^{2}-2 \tau \ln 2+2 \tau \alpha\langle s\rangle^{4}\right\} \\
&=0 \Rightarrow\left\langle\left(-J N_{n}+\tau\right)\langle s\rangle+8 \tau \alpha\langle s\rangle^{3}\right\} \\
& \Rightarrow\langle s\rangle=0 \text { or } \\
& \Rightarrow\left(-J N_{n}+\tau\right)+4 \tau \alpha\langle s\rangle^{2}=0 \\
&\langle s\rangle^{2}=\frac{-\tau+J N_{n}}{4 \tau \alpha}
\end{aligned}
$$

If $\tau\rangle J N_{n},\langle s\rangle^{2}<0$,
not possible so $\langle s\rangle=0$ is the only solution.
If $\tau \leq J N_{n}, \quad\langle s\rangle^{2}$ has a solution
$\Rightarrow \quad \tau_{c}=J N_{n}$ (as seen before).

$$
\begin{aligned}
\Rightarrow \quad\langle s\rangle^{2} & =\frac{\tau_{c}-\tau}{4 \alpha \tau} \text { for } \tau \leq \tau_{c} \\
\Gamma\langle s\rangle & =\frac{1}{2 \sqrt{\alpha}}\left(\frac{\tau_{c}}{\tau}-1\right)^{1 / 2} \text { for } \tau \leq \tau_{c} \\
\langle s\rangle & =0 \quad \text { for } \tau>\tau_{c}
\end{aligned}
$$

Smoothly increarmy as τ drops below Z_{c}.

