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Physics 353: Problem Set 8 — SOLUTIONS

1 Mean field Ising magnet revisited.
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Noting that tanh(0) =0 and sech(0) =1,

tanh x = 0 +1x + 0x? +%(—2)x3 +...

1
tanthx+§x3.

b. From our examination of the mean field Ising model:

N,

(s)= tanh( -
Therefore (s) ~ (%c@] _%(T_c@js |

r

<S>j = tanh (T—C<S>j ,using 7o = JNn. Near the phase transition, <S> is small.
T
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1~T7C—%(T7Cj <S>2, o) <S>z 3(;—(:] (%— j ,and so <S>z 3(;—(:} [TCTC_TJ . We see

1/2
that <S> oC (TC - T) , i.e. the critical exponent f=1/2.

(In case you’re wortied about the other factors of 7, try writing t = 7, — 7, with which

2

t t . .

<S> ~ \/§ 1-— || — . For 7 close to 7, the first factor is just something near 1. The second
Tc J\%c

factor changes sharply with t, like t"7.



c. Considering nonzero magnetic field. In the mean field treatment,
E, =—-1Bs, - Js, <S> = —(lB +J <S>) S, . Note that the magnetic field just adds a term that

“combines” with our coupling factor. Therefore the solution to <S> is simply

<S> =tanh [w] =tanh (TC<S>—+/IBJ . I'll write two solutions.
T T

Approach 1: Again considering small <S> and B near the critical point,

<S> = ((TC <S> + /15) / Z') _%((Tc <S> + ﬂB) / 7)3 . Differentiating both sides with respect to B,

2
Z:M:(T_C;”ij_(%@—hmj (T—C;ﬁij (Chain rule |
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Evaluating this as B — 0 and <S>—)0,;{=—C;(+—, so y =
T T

d(s)
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We see that £ = dB oc (T_TC) with ¥ =1.

T—17.

Approach 2: Avoiding Taylor expansion. From above <S> =tanh ((T o <S> + /13) It ) . Differentiate:

ST
<S> — 0, noting that sech® (0)=1:

;(=1{T—C;(+i:|,so ;(( —T—C]=i,andtherefore XY= :
T T T) 7 -1,
d(s)
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We see that £ = OC(T_TC) with ¥ =1.

dB

= M =sech® ((TC <S> + /15) / T)[T—C)( +&} (Again, Chain rule !). Evaluate as B — 0 and
T T




2 Miscibility transition.
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3 Clausius-Clapeyron relation.

P
a. Melting ice at -1 °C. aw =——, where L is the latent heat per particle and AV is the volume

dr 7Av
change per particle.  We need to understand all the variables and convert them to appropriate
units. Note that dT , one degree, is much smaller than T, 273 K, so we can write that the

L
increase in pressure dP = Ldr .
Av 7
A long route: The density of water is 1000 kg/m’, and each water molecule is 18x1.67x10™' kg =
3.01x10™ kg, so the volume per water molecule is 3.01x107%° /1000 =3.01x10% m’.

Similatly the volume per ice molecule is 3.0x107%° /917 =3.28x10® m’, so Av =-0.27x107°

—27

m’. L = 334 kJ/kg in units of heat per unit mass. Per particle, L is therefore

334x10°x3.01x10° =1.01x107° J.  The temperature 7=Kkzx273K =3.77x107% ].
20

Therefore dp 10110 :—9.92><1029E. In conventional temperature

dr 3.77x107 (-0.27x107)

dP Pa
units, multiplying by Boltzmann’s constant, aT =-1.37x10’ '
More succinctly: write p =density, = mass of a water molecule, so volume per particle
- m m 1 1 -
V:(p/m) l, ie. 1/concentration. AV = - :m[ - jzm(mj.
Puwater  Plice Puwater Pice Puwater Pice

The latent heat in units of energy is L=L"/m, where L' is the latent heat in the given units of

L d dr L dT L' ,
enetgy / mass. Therefore: dP = el —M. Note that the m’s and

AV T T Av - T (,Oice _pwater)
—1 334x10°%x917 x1000
273 (917-1000)

Therefore: to lower the melting temperature by one degree, you'd need to apply 13.7 million

=1.35x10" Pa.

Kg’s cancel! Plugging in numbers (SI units): dP =

Pascal of pressure above normal atmospheric pressure (about 10° Pa).

b. Consider a glacier... Using part (a), we need a pressure of 13.7 million Pascal. This pressure is
provided by the weight of the ice pgAh, where p is the density and h is the height, divided by

its area A. Using p from above, we therefore need pgAh/ A= pgh=1.37x10" Pa/K, so

h=1.53x10° meters, or about one-and-a-half kilometers.

c. A 50 kg person skating on an ice skate with a blade with dimensions around 20 cm x 0.1 mm

applies a pressure of 2.5x10" Pa. This is certainly enough to lower the melting temperature of
P P
ice by 1 degree. Applying j—_l_ =-1.37x10’ ?a from above, it will lower the melting

temperature by about 2 °C. However, one can (and usually does) ice skate at temperatures
considerably lower than -2 °C. When skating on -10 °C ice it doesn’t matter that your weight

makes the melting temperature -2 °C — the ice is still solid! Ice skating is not made possible by
the Clausius-Clapeyron relation, but rather by heat generated by friction.



4 The one-dimensional Ising model.
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5 Free energy of the mean field Ising model
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