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Physics 352 – Part 2 – Statistical Mechanics 
 

FINAL EXAMINATION 
 
 
 
Format: Closed book.  No calculators. 
Total Time:  2 hours. 
Write clearly! 
 
 
RELATIONS: 
 

• Binomial Distribution Formula: the number 
if combinations of k “up” spins out of N 

spins is 
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• Stirling’s approximation for factorials:  ln(N!) 
≈ N ln(N) – N. 

• Geometric series: 
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• Pressure is defined by 
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Another relation: 
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• Energy of a Monatomic Ideal Gas: 
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• Entropy of a Monatomic Ideal Gas:  
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• The quantum concentration for a particle of 

mass m : 
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• Specific heat capacity at constant volume: 
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• Specific heat capacity at constant pressure: 
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(1, 3 pts.)  Protons and Neutrons.  Protons ( p ) and neutrons ( n ) can convert into each other due 
to the “weak nuclear interaction,” and readily did so when the universe was small and hot and the 
particles were in thermal equilibrium with one another.  The process is described by chemical 
equations like: n p eν −+ ↔ + , where ν  is a neutrino and e−  is an electron.  We can think of this as 
a two-state system, with the “proton state” on the right side of the equation and the “neutron state” 
on the left.  The energy associated with a proton is 2

pm c , where pm  is the proton mass and c  is the 

speed of light; similarly, the energy of a neutron is 2
nm c .  We’ll ignore neutrinos and electrons and 

other subtleties (not a great idea in “real life,” but it doesn’t change the answer to this problem).  
Given that neutrons are more massive than protons (i.e. n pm m> ), which would you expect to be 
more abundant in the universe, protons or neutrons? 
 

 
 
(2, 6 pts.)  Magnets.  Consider a collection of spins with “ferromagnetic” interactions, meaning that 
any pair of spins has a lower energy if the spins are parallel than if they are anti-parallel. 
(a, 4 pts.)  Suppose at room temperature the collection is non-magnetic, meaning that on average, 

the spins are randomly oriented.  Mr. K. is confused: shouldn’t the system lower its energy by 
making the spins align?  What do you say to Mr. K.?  If Mr. K wants the spins to align, should 
he change the temperature?  (You do not need to calculate anything; write a few sentences.) 

 

 



[2 continued] 
(b, 2 pts.)  “I see,” says Mr. K.  “I know that if I apply a magnetic field, I can do work on the system.  

How can I calculate how much work I would need to do to get from the randomly aligned state 
to one in which all the spins are aligned?”  Answer this.  (You needn’t do any calculations or 
prove any relations – just explain what Mr. K. should calculate.) 

 

 
 
 
 
(3, 5 pts.)  More Magnets.  We continue with the setup of #2. For a collection of N  “binary 

spins” the entropy 
2

ln 2
2
sN
N

σ = − , where s  is the difference between the number of “up” and 

“down” spins.  The energy E sε= , where ε  describes the energy associated with a single spin – it’s 
proportional, for example, to the strength of any applied magnetic field.  For a ferromagnet, ε  is 
proportional to s  itself!  The spins create a field that aligns other spins.  Therefore, we can write 

C sε = − , where C  is some constant, and s  is the mean value of s .  Consider fixed 

temperature τ  and large N , so that we can simply write s s=  and E U=  for any spin value or 
energy we’re considering (i.e. fluctuations from the mean are negligible). 
(a, 2 pts.)  Write an expression for the Helmholtz Free energy, F , as a function of s  and various 

constants. 
 
 

 



(b, 3 pts.)  Show that at high temperatures we should expect to find 0s = , and at low temperatures 
we should expect to find nonzero s .  Find the “critical temperature” that separates these 
regimes. 

 
 
(4, 5 pts.)  Mean Energy.  Derive, from the Boltzmann Distribution and the definition of the 
partition function ( Z ), the following relation: 
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1 , where U is the mean energy and 1β τ= . 

Show also that the above relation can be written as 

( )2 lnU Zτ
τ
∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

, where τ is the temperature. 

[You are allowed to use these results in later problems even if you are not able to derive them here.] 

 



(5, 14 pts.)  An ideal diatomic gas.  In class and in the homework, we’ve examined ideal gases.  A 
single particle of mass m  in a three-dimensional cube of volume V  has energy levels that 
depend on three positive integer “quantum numbers,” i.e. 1 2 3( , , )PBE E n n n= .  I’m using the 
subscript “PB” for “particle in a box.”  These energy levels describe, for example, the energy of 
a monatomic molecule – something with no additional “degrees of freedom.”  You’ve shown 
that the partition function PB QZ Vn= .  (You do not need to derive this here.) 

 
(a, 1 pt.)  What assumptions or approximations did we make in our derivation of the energy of an 

ideal gas?  (A few words are sufficient.)  You may make these same assumptions in this problem, 
except as noted. 

 
We assumed high temperatures, so τ  level spacings, low density ( Qn n ), 

equivalent to high temperatures, non-degeneracy (meaning that the number of 
available states is large and we needn’t worry about “quantum effects”), and 
non-interacting particles.  (Any two of these were sufficient for full points 
on this problem.) 
 
 Suppose a molecule does have additional degrees of freedom, for example internal rotational 
and vibrational states, so that its energy is given by 1 2 3 i 2n 1t( , , ) ( , )PBE E n n n E m m= + .  The first term 
is the same as above.  The second, internal energy term can depend on other “quantum numbers,” 
for example integers 1m  and 2m .  The internal energy is independent of the 1 2 3, ,n n n  and also 
does not depend on V . 
(b, 2 pts.)  Show that the partition function can be written intPBZ Z Z= , where intZ is the partition 

function corresponding solely to the internal energy. 

 
 
 
 
 
 



(c, 1 pt.)  Using the relations of part (b) and Problem 4, show that the mean energy of one particle, 

1U , can be written as 1 1, 1,intPBU U U= +   -- i.e. separable terms corresponding to the particle-in-a-

box and internal energies.  You do not need to derive what 1,PBU  or 1,intU  are. 
  

 
 
For a diatomic molecule, (e.g. “dumbbells” like nitrogen, N2), there are two internal degrees of 
freedom, corresponding to vibration along the dumbbell axis and rotation perpendicular to the axis. 
(d, 1 pt.)  Using the Equipartition Theorem: What is the energy, U , of the gas of N diatomic 

molecules as a function of the number of particles, N, and the temperature, τ ?  Note that you 
can answer this without answering parts (b) or (c), though part (c) might help you. 

 
[See Phys. 353 Problem Set 1 & Solutions] 
 
(e, 3 pts.)  Show that the equation of state ( ...PV = ) for the ideal diatomic gas is the same as for 
the monatomic gas.  Note:  You do not actually have to derive what the equations of state are, you 
just have to show that they are the same.  (They are, by the way, PV Nτ= ; you may use this in part 
(f).)  Hint:  First derive a relation between P  and a derivative of the Helmholtz free energy F .  
Then use lnF Zτ= − , and the result of part (b).   
 
 
F U τσ≡ −  , so dF ddU dτ σ σ τ− −= .  Thermodynamic identity: d dU PdVτ σ = + , 

so dF Pd dV σ τ= − − , from which P F
V τ

= −
∂
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.  Using )ln(ZF τ−= , we find 
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.  From part (b), intPBZ Z Z= , so intln ln lnPBZ Z Z= + .  The internal 

partition function does not depend on V , so 
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, which is the same as it would be 

for the monatomic case – i.e. with no internal degrees of freedom. 



(f, 6 pts.)  Defining γ  as P

V

c
c , the ratio of the specific heat capacities at constant pressure and 

constant volume, calculate γ for the ideal diatomic gas.  The work done by a change in volume dV is 
PdV, just as for a monatomic gas (as it must be, since this is just the mechanical work associated 
with a weight on a piston, for example).  Note that definitions of heat capacities are provided on 
page 1. 
Note:  If (and only if) you were unable to derive the energy of the diatomic ideal gas, determine γ  
for a monatomic ideal gas (3 pts.). 
 
 
 
 
[See Phys. 353 Problem Set 1 & Solutions] 
 
 
 
 



(6, 12 pts.)  Grabbing polymers.  Consider a 5-bead polymer chain on a 2D hexagonal grid.  See 
the figures, below, which show two possible microstates of the system.  Each bead has to sit at a 
grid vertex, and two beads can’t occupy the same site 1 .  Unlike the system seen earlier in a 
homework assignment, there is no energy (E) difference between the various configurations.  Two 

beads are glued to particular grid sites, indicated by “Xs” in the figure; they cannot move. 

  
 

Mr. K decides to build a “grabber.”  It consists of an optical trap at the position indicated by the 
triangle in the figures.  A free bead, not in the optical trap, has energy 0.  A bead at the optical trap 
site has energy ε−  (negative ε), where 0ε > .  Let’s call the state of the polymer in which any bead is 
trapped “grabbed.” 
 A Suggestion: Draw all the microstates of the system – you may find the attached “hexagonal 
graph paper” useful.   
 Note: Flipping the drawing left-right does create a distinct state, and so should be counted 
separately.  This is because the pinned beads can’t move in any way, and no rotations out of the 
plane are allowed. 
 
[I’ll write all the parts of the problem here; indicate clearly which part you’re working on in your answer.] 
(a, 2 pts.)  Mr. K. thinks, “Clearly, the polymer lowers its energy by being grabbed, so for any 

positive value of ε, my grabber should effectively hold a polymer.”  He finds, however, that the 
grabber is not very effective – much of the time, the polymer is not trapped.  Without doing 
any calculations, explain what’s missing from Mr. K’s thinking. 

(b, 2 pts.)  What would you expect the entropy to be as 0τ → ?  As τ →∞ ?   
(c, 4 pts.)  At temperature, τ, what is the probability of finding the polymer “grabbed”?    (Hint:  

One approach is to consider the property “G ,” for “grabbed,” being 1 for a grabbed state and 
0 for an un-grabbed state; calculate G .) 

(d, 2 pts.)  How large would ε/τ have to be for a polymer to be “grabbed” at least half the time? 
(e, 2 pts.)  If you were to pick a spot to place the trap in order to maximize the likelihood of 

grabbing a polymer by its end, where would you put it?  Explain. 
a 

 

                                                 
1 If you’re worried by a lack of “realism” here, imagine monomer-monomer bonds that prefer 120° angles, equivalent to 
the hexagonal lattice shown. 



b Let’s draw all the states: 

 
c 

 
d 

 
e 

 



 


