Prof. Raghuveer Parthasarathy
University of Oregon; Winter 2008

Physics 352: The Binomial Distribution

For those of you who haven't seen the binomial distribution before (or for those who want a refresher): A brief derivation of the binomial distribution.

First, the notation N ! (" N factorial") means $N(N-1)(N-2)$...1. So $4!=4 \times 3 \times 2 \times 1=24$ By definition, $0!=1$.

Consider flipping N coins, which can either land heads (H) or tails (T). We are interested in the number of configurations which have k heads. For example, if $N=4$, there are 4 configurations with $k=3$, namely HHHT, HHTH, HTHH, and THHH.

If we don't care about heads and tails, and just count the number of ways of choosing N coins from a box, we find that the number of configurations is $N!$. This is because there are N possibilities for picking the first coin, $\mathrm{N}-1$ for the second, $\mathrm{N}-2$ for the third, etc.

Now let's count all the ways of arranging k heads and $N-k$ tails. When "picking" the first H coin, we can choose any of our k heads; when picking the second, we can choose any of the remaining $k-1$, the third, $k-2$, etc. Picking the $k+1^{\text {th }}$ coin, i.e. the first T coin, we can choose any of the $N-k$ tails; picking the $k+2^{\text {nd }}$ coin, any of the remaining $N-k-1$, etc. Thus the total number of permutations in which k coins are heads and $N-k$ are tails is $k!(N-k)$!. We don't care "which head is which," so all these permutations are equivalent for our goal of counting the number of configurations with a given number of heads.

Therefore $\Omega(N, k)$, the number of configurations which have k heads, is given by

$$
\Omega(N, k)=\frac{N!}{k!(N-k)!}
$$

This is the binomial distribution, and is often written

$$
\Omega(N, k)=\binom{N}{k} \text {, pronounced " } N \text { choose } k . \text {." }
$$

You can verify that the above distribution gives the correct values for configurations of flipped coins. Try doing the following exercise:

Flipping coins. Suppose you flip $N=4$ fair coins (i.e. coins with an equal probability of "heads (H) " and "tails (T)"). Make a list of all possible outcomes (you should find $2^{4}=16$). Make a table of the number, $\Omega(k)$, of outcomes with k heads, where $k=\{0,1,2,3,4\}$, and show that this agrees with that given by the binomial distribution.

In addition, you might like to read Chapter 1 (Principles of Probability) of the Dill and Bromberg book on reserve in the Science Library (see the syllabus). You will learn, for example, how to calculate the probability of drawing a royal flush in poker.

