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D I F F U S I O N  A N D  B R O W N I A N  M O T I O N  
 
 
 Microscopically, nothing is ever still.  Molecules of perfume from an open bottle will slowly 
diffuse across a room.  Chemicals will spread through your cells.  As Robert Brown observed over a 
century ago, microscopic particles in pollen grains and particles of dust in a cup of water will jitter 
endlessly, subject to what we now call Brownian motion.  Diffusion and Brownian Motion are some 
of the most ubiquitous processes in physics, chemistry, and biology; conceptual extensions to other 
“random” processes are also found throughout mathematics and economics.  We’ll examine the 
properties of diffusion.  Much of this discussion, especially on the Einstein-Smoluchowski relation, 
follows Berg’s excellent book [1]. 
 
Random Walks 
 
 As I walk down the street, the distance, x , I travel is linearly proportional to the number of 
steps, N , that I take; x  is also proportional to the time, t , that I spend walking.  This is not the 
case, however, for a microscopic object – e.g. a perfume molecule in the air, or a microparticle in a 
dish of water.  These objects are constantly buffeted by the molecules around them, a consequence 
of the molecular nature of matter and also of finite temperature (as we’ll see below).  They exhibit 
random walks, where each “step” is in a random direction relative to the one that preceded it.  (Of 
course, we can have both random and directed motion – for example if gravity pulls in one 
direction, “biasing” our random walk.  We’ll consider here unbiased random walks, however.)  How 
are x  and t related for a random walker? 
 
 The canonical random walker, always invoked as an example, is the “drunken sailor” who 
starts at a lamppost at position 0x =  and, every τ  seconds1, randomly moves left or right by one 
step of size δ .  (We’re considering a one-dimensional walk, for simplicity.  The 2D and 3D cases are 
very similar.)  After many ( N ) steps, where does the sailor end up? 
 

                                                 
1 Throughout this document, the symbol τ  will refer to this time step, not the temperature.  None of our “final” 
relations will refer to τ , so we needn’t retain this as a symbol that we’ll make use of.  We’ll write Bk T  for the 

temperature, using Boltzmann’s constant and the conventional temperature, T . 



 
Figure 1.  Five random walks.  The walker's position is plotted versus step number, for 100N =  steps. 

 
 
 The answer, as for all these sorts of statistical questions like this, is that we don’t know 
where the sailor ends up – it’s a random process!  (See Figure 1 for a few random walk trajectories.)  
We can, however, examine the probabilities of ending up in various places.  We can consider lots 
of random walkers, and take the average of all of their trajectories to get at “average” properties. 
 
 On average, our sailor will get nowhere ( 0x = ), being equally likely to take leftward as 
rightward steps.  So 0x = , where “ ” indicates the average over many walks.  See Figure 2 for 
plots of many random walks, as well as a histogram of the final positions – note that the distribution 
is peaked at 0x = . 
 

 
Figure 2.  Five thousand random walks, and a histogram of the walkers’ final positions.  The 
distribution (for a large number of walkers) is Gaussian in form, and is centered at zero – 

0x =  is the most probable destination.  The distribution has a finite width, however, that is 
an indicator of the distance traveled during a “typical” random walk. 

  



 But the sailor does move and is certainly more likely to cover more and more ground as time 
goes on.  How can we characterize this?  Let’s ask what the average value of 2 ( )Nx  – the mean 
distance-squared from the lamppost after N  steps – is.  Since ( ) ( 1)N Nx x δ− ±= ,  

[ ]22 2 2( ) ( 1) ( 1) ( 1)2N N N Nxx x xδ δ δ− + −= ± ± += .  The average value: 
2 2 2( ) ( 1) ( 1)2N N x Nx x δ δ− −= ± + .  The middle term is zero, as we noted above, so 

2 2 2( ) ( 1)N Nx x δ−= + .  At each step, the mean-squared-displacement increases by one step-

squared.  Since 2 (0) 0x = , 2 2(1)x δ= , 2 2(2) 2x δ= , etc.  We find that  

2 2( )Nx Nδ= . 

The characteristic distance traveled is 
1/22 ( )Nx :  We see that  

1/22 1/2( )N Nx ∝ . 
Each step takes some amount of time, τ; the total time t Nτ= , so: 
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, and 
1/22 1/2( )t tx ∝ . 

Rather than increasing linearly with time, the characteristic distance our random walker 
travels increases as the square root of time.  To go twice as far, the walker needs to take four 
times as many steps.   This is the key characteristic of Brownian motion! 
 
 There are other issues we won’t go into – questions like, if there’s a cliff 100δ away from the 
lamppost, what are the odds the sailor will tumble over it after N steps?  (As you might guess, this is 
important for the “capture” of diffusive molecules, as well as the survival of drunken sailors.) 
 

 We’ll define a diffusion coefficient, 
2

2
D δ

τ
≡ , and therefore write: 

 
2 ( ) 2tx Dt=  for a 1D random walk. 

 
In two and three dimensions, one can show (quite easily) that  

2 ( ) 4tr Dt=  [2D random walk; 2 2 2r x y= + ] 

2 ( ) 6tr Dt=  [3D random walk; 2 2 2 2xr zy= + + ] 

 
 A small molecule in room-temperature water has 310D −≈  mm2/s, and so will diffuse about 
10 μm ( 610 10−× ), a typical diameter of one of your cells, in about 20 ms.  The same molecule would 
diffuse 10 mm in 20,000 s (5 hours).  Since time scales as distance squared, long “trips” take a very 
long time! 
 



 
Diffusion and Temperature 
 

We’ve discussed our random walker, and related the diffusion coefficient D  to the length 
(δ ) and time (τ ) required for a step.  How can we connect this to the environment experienced by 
microscopic objects?  And what does this have to do with temperature?  These questions take us to 
Switzerland, in 1905. 
 
 Einstein published three groundbreaking papers in 1905.  In one, certainly the most famous 
among non-physicists, he invented / discovered special relativity.  In another, he explained the 
photoelectric effect by invoking the quantum nature of photons – for this, he received the Nobel 
Prize.  In the third, he explained the molecular underpinnings of Brownian Motion, one of the most 
important feats in statistical mechanics.  Remember that at the time, the very existence of 
“molecules” was still controversial!  
 

We’ll take a brief look at the nature of the diffusion coefficient.  Consider a particle of mass 
m in a fluid.  Every τ  seconds it takes a step (let’s say one-dimensionally) with velocity 

/xv δ τ± = ±  – i.e. it performs a random walk as above.  This velocity, xv , is determined by the 
temperature of the fluid – a fundamental result from statistical mechanics that we’ll derive later in 
the course.  The fact that the object is in thermal equilibrium with the molecules of the fluid means 

that the kinetic energy of its motion in the x-direction, 21
2 xmv , equals 1

2 Bk T , where kB is 

Boltzmann’s constant and T is the absolute temperature (e.g. measured in Kelvin).  Thus 
2
x Bmv Tk= . 

 
 Let’s say the particle is subject to some externally applied force, xF , acting in the x direction.  
The force leads to an acceleration /xa F m= .  The particle undergoes its random walk, and in time 

τ  moves a distance 21
2x avδ τ τ+ = +  or 21

2x avδ τ τ− = − + .  Each is equally probable, so the particle 

drifts with velocity 
( ) 1
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= .  The drift velocity is linearly proportional to 

the force – as we noted last quarter, this is characteristic of highly damped motion – which is the 
case anyway for small objects in fluids.  We write x dF bv= , where b  is the drag coefficient.  With 

the symbols above, 
2mb
τ

= . 

 

 Recalling from above that 
2

2
D δ

τ
= , we combine the four boxed expressions above to give 

Bkb
D
T

= , or 
BD
b

k T
= . 



 This is known as the Einstein-Smoluchowski relation.  It is remarkably general, and does 
not depend on nature of the particle or details of the forces acting on it.  In deriving it, we “made 
up” discrete steps of size δ  and duration τ , and also made up an external force about which we 
knew nothing.  All of these parameters, however, drop out of the analysis!  The Einstein-
Smoluchowski relation combines a macroscopic thermodynamic quantity (the temperture, T ) and a 
“mechanical” quantity (the drag coefficient, b ) to give the diffusion coefficient. 
 

For a sphere of radius a  in a fluid of viscosity η , the drag coefficient 6b aπη= .  (This 

might look familiar from last quarter.)  Therefore 
6

BTkD
aπη

= .  As Einstein wrote in 1905 [2]: “The 

coefficient of diffusion of the suspended substance therefore depends (except for universal 
constants and the absolute temperature) only on the coefficient of viscosity of the liquid and on the 
size of the suspended particles.” 

 
Some numbers:  A microsphere of radius 1μm (around the size of a bacterium) in water at 

room temperature has 72 10D −≈ ×  mm2/s = 12 10−×  μm2/s.  It would take around a minute to 
diffuse 10 μm. 
 
 The Einstein-Smoluchowski equation is a special case of “fluctuation-dissipation relations” 
that are very important in physics, revealing relationships between parameters that characterize 
fluctuations (here, D ) and the dissipation of energy (here, b ). 
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