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1    I N T R O D U C T I O N :  E L E C T R O M A G N E T I C  W A V E S  
 
 
1.1  Wave motion 
 
This section deals with issues of notation and geometry that pertain to waves in general – not just light, but also waves 
in fluids, vibrations of solids, etc.  Some of it is review.  See your notes from last quarter, and also Hecht Chapter 2.  
It may be more inspirational to first look at Section 1.3, on the electromagnetic spectrum, before reading on. 
 
1.1.1  WAVE EQUATIONS 
 
 As we learned last quarter, a function ( , )x tψ  is a solution to the one-dimensional wave 

equation  
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if it has the form ( , ) ( )x t f x vtψ = − .  As usual, x  is position and t  is time; v  is the speed of the 
wave.   (This was described by d’Alembert around the mid 1700’s.) 
 The more general wave equation, in >1 dimension, is  
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where ∇  is the Laplacian.  In 3D, in Cartesian coordinates, 
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 The simplest solution to the wave equation is a traveling sinusoidal wave:  

( , ) cos( )x t A kx tψ ω= − .  The wavelength 2
k

πλ =  – if we consider the wave at a particular time, 

e.g. 0t = , the crests are separated by distance x λΔ = .  The frequency 2f ω
π=  -- if we consider 

the wave at a particular position, e.g. 0x = , it oscillates with a period  1T f= .  The amplitude is 

A .  The wave speed is related to the other variables by v fk
ω λ= = , as we can see by thinking 
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about what the wave looks like at various times (see Figure 1.1).  This sinusoidal traveling wave has a 
single frequency – it is monochromatic. 

 
Figure 1.1.  The traveling wave ( , ) cos( )x t A kx tψ ω= −  plotted at time 0t =  (black solid 
curve) and 0t >  (gray dotted curve).  As time increases, the wave appears displaced to the 
right. 

 
 The phase of the wave is kx tφ ω= − .  More generally, we can write 

( , ) cos( )x t A kx tψ ω δ= − − �, where δ  is the initial phase, i.e. what sets the value of ψ  at 
0, 0x t= = .  Therefore ( , )x t kx tφ ω δ= − − .  Generally, differences in φ  are important (as we’ll 

see, for example, below when discussing interference); the absolute value of φ  is not. 
 
1.1.2  SUPERPOSITIONS 
 
 The wave equation is linear in ψ , therefore its solutions obey the principle of 
superposition: If 1ψ  and 2ψ  each satisfy the wave equation, then 1 2ψ ψ ψ= +  is also a solution.  
The relative phase difference between 1ψ  and 2ψ  is important in determining their interference:   
 
 Figure 1.2 shows an illustration of the superposition of two sine waves (like Hecht Figure 
2.14).  I’ve plotted 1 1.0cos( )kxψ =  , 2 0.9cos( )kxψ δ= − , and 1 2ψ ψ ψ= +  for various values of 
δ .  (I’ve chosen slightly different amplitudes for these two waves, to make the illustrations clearer.) 
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Figure 1.2.  The sum (superposition) of the waves 1 1.0cos( )kxψ =  , and 

2 0.9cos( )kxψ δ= − , and 1 2ψ ψ ψ= +  for various values of δ .  Upper left: 0δ = ; upper 

right: / 3δ π= ; lower left: 2 / 3δ π= ; lower right δ π= . 

 

Note that a phase difference 0δ =  leads to constructive interference, and a phase difference 
δ π=  leads to destructive interference. 
 
 
1.1.3 COMPLEX NOTATION 
 As in Physics 351, we’ll simplify out lives by using complex exponentials: 

( )( , ) cos( ) Re j kx tx t A kx t Ae ω δψ ω δ − −⎡ ⎤= − − = ⎣ ⎦� . 

 We’ll typically just write  
( )( , ) j kx t jAe Ax t eω δ φψ − − == , 

and just take the real part when needed. 
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 Note that the magnitude of ψ , denoted ψ , is given by 2 *ψ ψ ψ= , where *ψ  is the 

complex conjugate of ψ  (i.e. making all the j ’s into j− ’s).  If ψ  is a vector, 2 *ψ ψ ψ= ⋅ .  
[Review last quarter’s math if necessary.] 
 
 
1.1.4  TYPES OF WAVES 
 For the one-dimensional traveling wave illustrated above, each point corresponds to a 
particular phase.  In 2- or 3-D, there can be more complex structures.  It will be useful to consider 
points of equal phase, which we’ll refer to as wavefronts. 
 Plane waves.  A simple and very useful construction is the plane wave.  Let’s first illustrate 
this for a two-dimensional wave (Figure 1.3), in which we can plot the value of ψ  along the third 
dimension: 

 
Figure 1.3.  A two-dimensional plane wave: ( , ) cos( )x y kx tψ ω= − , plotted at time 0t = . 

 
Note that ψ only varies along one spatial dimension (in this case, x).  Contours of equal phase (i.e. 
wavefronts) are lines in the xy plane.  As the wave travels, for the example shown in Figure 1.3, it 
moves in the x direction – i.e. parallel to a wavevector, k  , that is perpendicular to these lines of 
constant phase and parallel to x̂ .  We can write ( , ) cos( )x y A kx tψ ω= − , or 

( ) cos( )r A k r tψ ω= ⋅ − , where r  is a vector in the xy plane – think about how the dot product 
selects the x-component of r .  (We’ll discuss this further below.) 
 For a three-dimensional plane wave, positions of constant phase (i.e. wavefronts) form a set 
of parallel planes (see Figure 1.4).  (We can’t plot ψ  very easily – try it!)  This is a good description 
of many sorts of light beams.  Also, any 3D wave can be expressed as a combination of plane waves 
(by Fourier analysis). 
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Figure 1.4.  Positions of equal phase form a series of parallel planes for a three-dimensional 
plane wave – each shaded plane has the same value of the phase of the wave function, ψ .  
The darker planes differ by a phase shift of 2π , and so are separated by distance λ  (one 
wavelength).  (Typically, we’ll only draw wavefronts that are separated by 2φ πΔ =  -- i.e. 

only the dark planes.)  The velocity is perpendicular to the planes, as is the wavevector, k . 

 
 
The three-dimensional plane wave is described by 

( ) cos( )r A k r tψ ω= ⋅ − , 
where r  is any vector in 3D space, as we’ll now show.  
Consider a position vector ˆ ˆ ˆr x yx y zz+ += , where ^ 
indicates a unit vector, and some particular vector 0r .  Their 
difference: 

0 0 0 0( (ˆ ˆ ˆ) () )r r x x y y z zx y z− = + −+− − . 
(See Figure 1.5, based on Hecht Fig. 2.19). 
Consider the set of points { r } described by ( )0 0r r k− ⋅ = .  

 
Figure 1.5.  A plane in 3D. 

 

As r  varies, this sweeps out a plane perpendicular to k  (See Figure 5).   Expanding this:  
( ) ( ) ( ) ( )0 0 0 0 0x y zr r k k x x k y y k z z− ⋅ = − + − + − = , or x y zk x k y k z a+ + = , where 

0 0 0x y za k k yx k z+= +  is a constant.  Therefore the equation of a plane perpendicular to k  is 

constantk r a⋅ = = .  The set of planes over which ( )rψ  (at 0t = ) varies sinusoidally is 

( )( ) cosr A k rψ = ⋅ , or ( )( ) expr A j k rψ = ⋅ .  This function is periodic if k r⋅  changes by 2π , i.e. 

2k λ π= , or 2k k π
λ= = , as expected.    The traveling plane wave is described by 

( )( )( ) expr A j k r tψ ω= ⋅ − .  If it’s moving along the x-axis, for example, ( )( )( ) expr A j kx tψ ω= − . 

   To reiterate: the wavefronts of a 3D plane wave are planes.  Typically, we’ll only draw 
wavefronts that are separated in phase by 2φ πΔ = , which are therefore spatially separated by 

distance λ .  The wavevector k  points perpendicular to these planes. 

 Often, we describe the wave by a ray that points along k . 
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Figure 1.6.  Wavefronts for a spherical wave are concentric spheres centered on the source. 

 
 Spherical waves.  A point-source of light emits spherical waves – the wavefronts are 
concentric spheres that travel away from the point (Figure 1.6).  The wave function is 

( )( , ) expAr t j kr t
r

ψ ω⎡ ⎤= −⎣ ⎦ , 

where A  is a constant and r  is the distance from the source.  Note that the amplitude decreases 
with r .  (Think about why this might be – we’ll return to it later.) 
 Cylindrical waves.  A line-source of light, for example a slit, emits cylindrical waves – the 
wavefronts are concentric cylinders that travel away from the line.  The wave function is  

( )( , ) expAr t j kr t
r

ψ ω⎡ ⎤= −⎣ ⎦ , 

where A  is a constant and r  is the distance from the line.  Again, the amplitude decreases with r . 
  
 
1.2  Light 
  
1.2.1  ELECTROMAGNETIC WAVES 
 
 Light is an electromagnetic wave.  As you’ll see in an electromagnetism course, in the 
1800’s Michael Faraday conducted beautiful and groundbreaking experiments that revealed that 
electric and magnetic fields are coupled to one another.  These insights led James Maxwell to 
formulate what are known as Maxwell’s equations, which can be combined to yield: 

 
2

2
0 0 2t

E Eμ∇ =
∂
∂

ε  

 

2
2

0 0 2t
B Bμ∇ =

∂
∂

ε
 

Here, E  and B  are the electric and magnetic fields, respectively, 0ε  is the permittivity of free space 

(a constant), and 0μ  is the permeability of free space (another constant).  We see that E  and B  
obey wave equations – the fields can propagate as traveling waves! 
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 The speed of the waves is 
0 0

1c
μ

=
ε

.  Plugging in the known values of 0ε  and 0μ  yields 

83.0 10c ×=  m/s, exactly equal to the experimentally measured speed of light!  With this insight, it 
was realized that light is an electromagnetic wave.  
 
 Light in matter.  The above speed is correct for light traveling in a vacuum.  In matter of 

index of refraction n  (related to the electrical response of the material), the speed of light is cv n= .  

(The index of refraction is always ≥ 1.)  For air at 20 °C and atmospheric pressure, n=1.0003.  For 
water at 20 °C, n = 1.33.  For typical glass, n=1.46.  The frequency of the wave is unchanged from its 
value in vacuum – the rate of oscillation of the atoms excited by the electric field is constant.  The 
wavelength of the light is different from its value in vacuum, and obeys the general relation 
encountered in Section 1.1: v fλ= .  Therefore waves in matter are shorter than in free space: 

0/ / /v f c nf nλ λ= = = , where 0λ  is the free space wavelength. 
 
1.2.2 POLARIZATION 
 
We noted above that electric and magnetic fields can propagate as waves.  It turns out that E  and 
B  are perpendicular to one another and to the propagation direction (Figure 1.7) (something else 
you’ll learn about in an electromagnetism course.)  The magnitudes of the field amplitudes are 

related by: E v B= , where v  is the speed. 

 
Figure 1.7.  Electric and magnetic fields of a plane-polarized EM wave traveling along the z 
direction. 

 
The direction of E  specifies the polarization of the wave.  If this direction is constant, as in 
Figure 1.7, we say the wave is linearly polarized (or plane polarized).  In Figure 1.7, for example, 
note that E  is always parallel to the x-axis (in other words, ˆ( , )E E z t x= ).  Waves don’t have to be 

plane polarized, and can do a variety of interesting things.  If the direction of E  rotates as the wave 
propagates, then we have circular or elliptical polarization.  (We won’t go into the difference 
between the two – it’s a simple thing to look into if you like.) 
 
1.2.3 ENERGY AND INTENSITY 
 
 You’ll also learn in an electromagnetism class that electromagnetic waves carry energy and 
momentum.  The power per unit area crossing a surface is 2

0S c E B= ×ε , known as the Poynting 
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vector.  Note that it points along the propagation direction (i.e. parallel to k ), not surprisingly.  (See 
the figure of the electromagnetic wave.)  We won’t use S  much in this course.  Note however that 

since E v B= , S  is proportional to 
2

E .   

 The intensity (or irradiance), I , of the wave is the average energy carried per unit area per 
unit time, i.e. the power per unit area.  It is the intensity, not the electric field directly, that we 
“see” as brightness.   “Average” means that we consider the average power over a period.  (Note 

that the intensity is a number, not a vector.)  Since S  is proportional to 
2

E , the intensity of an 

electromagnetic wave is proportional to 
2

E  as well -- this is important.  We can also think about 

this, more simply, from last quarter’s perspective: the energy of a wave is proportional to the square 
of its amplitude, and therefore  

2
I E∝ . 

Recall that 
2 *E E E= ⋅  -- this will prove useful. 

 What is the constant of proportionality?  For the purposes of this course, we don’t care, 

since all we’re concerned with are relative intensities.  However, for completeness:  2
0 0

1
2

I cE= ε  in 

vacuum, where 0E  is the electric field amplitude.  In matter, 2
0 0

1
2

I vE= ε , where v is the speed of 

the wave and ε is the permittivity of the medium. 
 
 
1.2.4 COHERENCE 
 
The light from a light bulb is emitted by many independent sources throughout 
the filament (see Figure 1.8).  Each emitted wave has a random phase 
difference relative to any other.  The light bulb is an incoherent light source.  
(As is the sun, a fluorescent bulb, or anything besides a laser.)  Moreover, any 
single wave from a light bulb doesn’t extend perfectly to “±∞ .”  What do we 
mean by this?  The wavefronts for a perfectly coherent plane wave are planes 
separated by λ  (see Figure 1.4) – the separation is always λ  over the entire 
extent of the wave.  The wavefronts of light from a real, imperfect wave are 
separated by λ  if we consider some finite span of size approximately CL , but 
if we look at larger lengths the phase relations appear “randomized” – see 
Figure 1.9.  CL  is called the coherence length – it’s about 10 μm (around 20 
λ ) for a light bulb.  (There’s a more precise way to define the coherence 
length that won’t concern us here – feel free to ask.) 

 

Figure 1.8.  A light 
bulb – an incoherent 
light source 



Notes on Optics – R. Parthasarathy – 2008    Page 9 

 
Figure 1.9.    The coherence length, CL , describes the spatial extent over which wavefronts 

(planes that differ by a phase shift of 2π ) are separated by integer multiples of the 
wavelength.  Over distances larger than CL≈ , the phase “resets” and the coherence of the 
wave with itself – the ability to translate by an integer number of wavelengths and “match 
up” – is lost. 

  
 A laser is a coherent light source – all the waves emitted by all parts of the device have the 
same phase.  Moreover, CL  is typically around 1 meter (> 106 λ), and can even be kilometers in 
length.  This is what makes lasers great!  (Lasers were invented in the 1960’s.  At the time, they were 
perceived as scientifically remarkable, but of questionable practical utility – they were “an answer in 
search of a question.”  Now, of course, lasers are ubiquitous and underpin an enormous amount of 
modern technology!) 
 
 
1.3  The Electromagnetic Spectrum 
 
 Light is an electromagnetic wave, and there are a wide variety of wavelengths that we 
encounter.  “Visible light” comprises a small fraction of this range.  The electromagnetic spectrum is 
a continuum of wavelengths and frequencies.  For convenience, we divide it into various artificial 
categories.  The tables below, from Hecht, give values for the frequency (ν , which we’ve been 
denoting f ) and the free-space wavelength (λ , of course related to f  by f cλ = ) for a range of 
electromagnetic radiation.  It also gives the energy of a single photon – the smallest “packet” of 
energy that the light can carry – which is proportional to its frequency; this is a consequence of 
quantum mechanics, and won’t concern us in this course. 
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Additional comments: 
[1]  Hydrogen is the most abundant element in space, and its 21-cm atomic emission line is commonly used 
to image the dynamics of galaxies and other structures. 
[2]  The frequency emitted by microwave ovens is about 2.5 GHz, resonant with the vibration frequency of 
water. 
[3]  The dominant wavelengths of “room temperature” thermal radiation are in the infrared, as we’ll see later 
this quarter or in Physis 353. 
[4]  Since the wavelength of X-Rays are comparable to interatomic spacings in materials, X-Rays can reveal 
the molecular structure of crystals. 
 
 

 
 


