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2    D I F F R A C T I O N  
 
 For centuries, debate raged over whether light is a wave or a particle – an interesting history 
that we won’t go into.  It turns out that light behaves as both a wave and a particle – it travels as a 
wave, as described in Section 1, but conveys energy as a particle, which won’t concern us.  The wave 
nature of light becomes important and apparent when considering spatial disturbances that are not 
large compared to the wavelength (λ), for example the sharp edge of a barrier, around which 
electromagnetic waves diffract (Figure 2.1).  Like ripples in a pond, the waves can bend around the 
barrier, so the intensity of the light reaching a screen beyond the barrier does not reveal a perfectly 
sharp shadow, but rather a fuzzy one.  Diffraction refers to phenomena like this, in which the wave 
nature of light and, as we’ll see, its interference with itself determine its intensity profile.  In general, 
the regime in which the wave nature of light is important is called Physical Optics.  (The regime in 
which the system size is much greater than the wavelength of light, and hence wave properties are 
relatively unimportant, is called Geometric Optics, or Ray Optics.) 
 Diffraction is a general property of waves, and the phenomena we’ll explore in this section 
apply to water waves, sound waves, etc., in addition to light. 
 

 

Figure 2.1.  The wave nature of light is 
important when dealing with spatial 
features, for example the sharp edge of a 
barrier, that are comparable or smaller in 
size than the wavelength of light, for 
example the sharp edge of a barrier.  
Waves can bend around the barrier – think 
of ripples in a pond – and so the pattern of 
light reaching a screen intensity does not 
show  a sharp “black or white” division but 
rather a “fuzzy” edge.  Shadows are never 
sharp! 

 
 
2.1  Two-Slit Interference 
 
 Consider a plane wave incident on a barrier with two slits, separated by a distance D (Figure 
2.2).  (Imagine the slits themselves to have negligible width – we’ll come back to this later.)  Each slit 
acts as a point-source for waves, which continue propagating to the right in the Figure.  Far to the 
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right is a screen.  We want to know: what is the intensity , I , of the light hitting the screen as a 
function of θ , the angle relative to a line perpendicular to the barrier (see Figure 2.2)? 
 

Figure 2.2.  Two-slit interference:  A plane 
wave is incident from the left on two slits of 
negligible width separated by distance D.  
Each slit acts like a  point source for waves 
continuing to the right; the two resulting 
waves interfere with one another.  This 
interference is manifested in the pattern of 
light intensity observed on a distant screen, 
and is a function of the wavelength, D, and 
the angle θ. 

 
 The electric field of the incident wave is  

( )0 exp j kE xE tω⎡ ⎤− ⎦= ⎣ , 

with 2k π
λ= , as usual (see Section 1).  We could add any phase offset to this – it doesn’t matter, as 

you’ll see shortly.  We’re concerned with the light hitting a far off screen, at angle θ .  If the screen 
were close by, a ray would have to leave slit #1 at some angle 1θ  and slit #2 at some angle 2θ , 
where 1θ  and 2θ  may be different, to both reach the screen at  angle θ .  However, as the screen 
moves farther and farther away, both 1θ  and 2θ  approach θ  – try drawing this if you don’t 
understand.  So, to consider )(I θ  we need to consider rays leaving each slit at angle θ .  Let’s define 
our coordinates so that the barrier is at 0x = . 
 The two rays that travel at angle θ  are indicated in Figure 2.3; their fields are 
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where we’ve defined s  as the coordinate in the “tilted” θ  direction, and we’ve indicated the extra 
distance that ray 2 has to travel by δ .  Note that 1( 0)E s =  and 2 ( )E s δ= −  have the same phase, as 
they should since they come from the same incident wave. 
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Figure 2.3.  The geometry of light propagation for two-slit interference (see Figure 2.2).  (a) 
For the angle θ illustrated, light traveling from the lower slit (slit #2) travels a greater 
distance than light from slit #1.  The extra path length is denoted δ, and is the reason for a 
phase difference between the two waves.  (b)  A “zoomed in” view of the geometry relating 
D, δ, and θ. 

 
 Graphically, we can see that if δ  is an integer multiple of λ , the two waves will add 
constructively (Figure 2.4).   
 

 
Figure 2.4.  Interference.  (a)  If the extra path length, δ, between the two paths is an 
integer multiple of wavelengths, the two waves will constructively interfere, leading to high 
intensity at the screen.  (b)  If the extra path length δ between the two paths is a half-
integer multiple of wavelengths, the two waves will destructively interfere, leading to zero 
intensity at the screen – note that when wave #1 is “up,” wave #2 is “down” and vice versa. 

  
If δ  is a half- integer multiple of λ , the two waves will add destructively, and give zero light 
intensity.   
 
 Let’s examine this mathematically.  The superposition of the two electric fields:  

( ) [ ]{ }1 2 0 exp 1 expE jE E jkE ks tω δ⎡ ⎤+ ⎣ ⎦= − += . 

From geometry, sinDδ θ=  (Figure 2.3b), so  
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The intensity (see Sections 1.1.3 and 1.2.3) is given by 
2 *I E E E=∝ ⋅ .  Therefore  
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making use of the Euler relation ( )1cos( ) exp( ) exp( )
2

x jx jx= + − .  Via the identity 

[ ] 22 1 cos(2 ) cos ( )x x+ = , the intensity becomes 
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Note that without interference – just considering the incident plane wave, for example, 
2

0I E∝ , 

with the same constant of proportionality ( c ’s etc.) – we’ll define this intensity as 0I .  Therefore: 

 2
0

sin4 cos DII θπ
λ
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⎝ ⎠

= . 

 As we saw graphically, if sinD mθ λ= , where m  is an integer, the cos2 factor is maximal 

and we have constructive interference.  If sin
2
mD θ λ= , where m  is an odd integer (i.e. 

1 3 5, , ,...
2 2 2 2
m
= ), the cos2 factor is zero and we have destructive interference.  The intensity pattern 

we see on the screen, therefore, is not uniform but rather has a sequence of maxima and minima.  
This is plotted in Figure 2.5. 
 

 

Figure 2.5.  The two-slit intensity function: 2
0

sin4 cos DII θπ
λ
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= . 
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 Note that the maximal value of the intensity is 4 times that of a single wave.  If interference 
“didn’t exist” we’d have light from the two slits combining to simply give twice the single-wave 
intensity.  With interference, we have bright peaks with 4 times the intensity and dark minima with 
zero intensity. 
 
2.2  N-Slit Interference 
 
 Now consider N slits, each separated by distance D (drawn in Figure 2.6) for N=5. 
 

 
Figure 2.6.  N-slit interference – each slit is of negligible width and is separated from its 
neighbor by distance D.  In the example drawn, N=5. 

 
 
Building on our N=2 analysis in Section 2.1, we can write the total electric field as 

( ) [ ] [ ] [ ] [ ]{ }0 exp 1 exp exp 2 exp 3 ... exp ( 1)E j ks t j j j NE jω α α α α⎡ ⎤− + + + + + −⎣= ⎦ , 

where for convenience we’ve defined 2 sinDπα θ
λ

≡ .  Note that this is 

( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ){ }2 3 ( 1)
0 exp 1 exp exp exp ... exp

N
j ks t j j j jE E ω α α α α

−
⎡ ⎤− + + + += ⎣ ⎦ + , 

i.e. the terms in the braces form a finite geometric series, since each term is equal to the preceding 
one times je α . 
 As we all should know, the summation of a geometric series is:  
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In case you’ve forgotten the proof, here it is:  Define S as 
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 Applying this to our electric field expression:  
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We can simplify the expression in the parentheses by factoring out exponentials from the numerator 
and denominator: 
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using the Euler relation ( )1sin( ) exp( ) exp( )
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 The intensity 
2

I E∝  – it’s easy to take the complex conjugate of the above expression and 

multiply, since each of the exponential terms simply yields 1, from which we find: 
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Explicitly writing the α ’s: 
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This is plotted in Figures 2.7 and 2.8. 
 
 Maxima and minima.  We see that the numerator of )(I θ  is zero when 

sin /N D mπ θ λ π= , i.e. sin / /D m Nθ λ = , where m  is an integer – but note that both 
numerator and denominator are zero if m  is an integer multiple of N .  We see that the denominator 
is zero when sin / 'D mπ θ λ π= , i.e. sin / 'D mθ λ = , where 'm  is an integer – in this case, 
however, the numerator must also be zero since sin / 'N D Nmπ θ λ π= , and N  is an integer.  If 
both the numerator and denominator are zero you can verify (L’Hopital’s rule) that 2

0I I N→ .  I’ll 
leave a more detailed summary of the locations of maxima and minima as an exercise.  
 Let’s illustrate )(I θ  with a plot; we’ll choose 6N =  slits (Figures 2.7 and 2.8).  There are 

large maxima separated in angle by sin D
λθ =  .  From your analysis of )(I θ , you should find that 

this angular spacing between the peaks is independent of the number of slits.  The angular width 

of the large peaks is approximately sin ND
λθΔ ≈  – half the distance in angle to the first local 
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minimum – which gets sharper as we increase the number of slits – a very useful feature, as we’ll see 
shortly. 

 

Figure 2.7.  The N-slit intensity function, 
( )
( )

2

0 2

sin sin /
sin sin /

D
I I

N
D
π θ λ
π θ λ

= , plotted for N=6.  

Note that there are infinitely many large maxima separated in angle by / Dλ .  Between each 
pair of these large peaks are N-2 smaller maxima and N-1 zeros. 

 
Figure 2.8.  The same N-slit interference pattern as plotted in the previous figure, “zoomed 

in” to show the “zeroth” and first peaks. 
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2.3  The Diffraction Grating as a Monochromator 
 
 Suppose we have a telescope that collects light from a star, and we want to measure the 
star’s spectrum – i.e. the intensity as a function of wavelength, )(I λ .  How can we do this?  Our 
detector (like most good detectors, at least over some range of wavelengths) simply measures 
intensity, regardless of the wavelength of the light hitting it. 
 We can pass the light though an N-slit grating, or, equivalently, reflect it off a surface with N 
mirrors – a diffraction grating.  How does this help?  Light of wavelength 1λ  is deflected to angle 

1 / Dλ .  By this we mean that the maximal intensity peak for light of this “color” is at the angle 

given by 1
1sin D

λθ = , and integer multiples, as in Section 2.2; typically, the angles involved are 

small, so sinθ θ≈ .  Light of wavelength 2λ  is deflected to angle 2 / Dλ , etc.  So moving our 
detector to various positions on the screen and measuring the intensity as a function of angle on the 
screen reveals the intensity as a function of wavelength!  (In other words 1 1(( ) )I Iλ θ= , 

2 2(( ) )I Iλ θ= , etc.). 
 The sharper the diffraction peaks (high N) the finer the resolution in λ  – see the end of 
Section 2.2. 
 Extrasolar planets.  The discovery  (within the past ≈ 10 years) of planets outside our solar 
system – one of the most remarkable discoveries of recent history – used exactly the approach 
outlined above to measure tiny shifts in stellar spectra due to the influence of the orbiting planets.  
The N  of the diffraction grating was around 100,000 ! 
 
2.4  Single-Slit Interference 
 
 In our initial discussion of two-slit interference we neglected the finite width of the 
diffraction grating.  This finite width is important – just as waves from each slit interfere with one 
another, waves traversing various paths through a single slit will interfere with one another, and lead 
to diffraction.  Fortunately, it is easy to analyze single-slit interference – it is simply the limit of the 
N-slit case discussed in Section 2.2 as N →∞ , 0D → , and the product ND a→ , where a  is the 
width of the slit. 
 You’ll examine this in your homework, and show that 

 0

2
sin)( II βθ
β

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, where 

sinaπ θβ
λ

= , as plotted in Figure X. 
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Figure 2.9.  The intensity function of a single slit of width a.  Note that the angular width of 

the peak is approximately / aλ . 

 
 
2.5  Diffraction and Resolution 
 
 This single-slit diffraction pattern is exceptionally important.  Any optical element – the 
pupil of your eye, a telescope mirror, a microscope lens, etc – is an aperture, and the )(I θ  above 
describes how light travels through it.  Why? 
 We’ve been considering light leaving an aperture, i.e. being “transmitted,” and reaching a 
screen, where it is “received.”  But look carefully at Figures 2.2, 2.4, or 2.6 – the setup of our wave 
interference scenarios.  Our analysis didn’t invoke at all the direction the waves were traveling, only 
the path length difference between various paths.  So we would get the same interference effects if 
light were transmitted from a point source at angle θ on the screen, passed through aperture(s), and 
were detected at the left. 
 Consider light from a point source (e.g a star) located at the screen (e.g. the sky).  We 
observe the point source by detecting the intensity passing through a single-slit aperture of width a  
(e.g. a telescope lens plus intensity detector).  We tilt the barrier containing our slit (e.g. our 
telescope) so that the angular position of the star of interest is 1 0θ = ; this angle gives the maximum 
of the single slit intensity function, and we happily detect light from the star.  We tilt the telescope; 
at the new 2 0θ = there is no star; we see no light.  We tilt further; at this third  3 0θ =  there is light 
again.  “Aha!,” we say, “We have seen two stars!” 
 Now suppose there were two stars very close to one another in angular position – let’s say 
the difference in sinθ , is just 0.1 / aλ .  (We typically deal with small angles, by the way, so 
sinθ θ≈ .)   Since the width of our interference function is / aλ≈ , no matter how precisely we 
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point at one star, we’ll be detecting a sizeable fraction of the intensity of the other – there is no way we 
can tell that we’re looking at two stars rather than only one! 
 The angular limit of resolution, often just referred to as the resolution, of our single-slit 
aperture – the minimum angular separation that two objects must have in order to be able to 
distinguish them – is /res aθ λ≈ , where a  is the aperture size.  (It’s an “approximately equals” sign 
because there are different ways of defining criteria for distinguishability that won’t concern us; most 
commonly, one uses the “Rayleigh criterion” 1.22 /res aθ λ= .)  Note that smaller resθ  means that 
we can more finely distinguish objects – we can “see” better – and that this can be achieved by 
increasing the size of our aperture.  This is why one builds big telescopes.  (Big telescopes have 
another, unrelated, advantage: they collect more light.) 
 This issue of diffraction sets the fundamental limit on the performance of telescopes, 
microscopes, etc.  (Though as we’ll see later, the past decade or so has seen clever ways around this 
“diffraction limit” in certain contexts in microscopy.) 
 
 


