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4    L E N S E S  
 
 We often wish to collect and re-shape electromagnetic wavefronts to create images of 
objects.  Lenses are powerful tools for achieving these goals and are obviously very useful, forming 
the essential imaging elements of telescopes, microscopes, cameras, your eyes, and many other 
devices.  The “ideal” shape of a lens surface is generally some non-spherical conic section 
(hyperbola, parabola, etc.), but in practice spherical lenses are typically used, since they are vastly 
easier to make than aspheric (non-spherical) lenses.  Typically, one uses spherical lenses and then 
corrects for their “aberrations” (non-ideal behavior), e.g. by using combinations of lenses. 
 
4.1  A spherical interface 
 
 Consider a point source emitting spherical waves from point S , in a medium of index of 
refraction 1n  (see Figure 4.1).  Can we construct a spherical interface of radius R  that focuses the 
emitted light to point P , regardless of where it hits the interface?  What should R  be?  Point P  is 
embedded in a medium of index of refraction 2n ; we’re considering the shape of the interface 
between medium 1 and medium 2.  Consider 2 1n n> , so that the rays from S  will be refracted 
“inwards.”   
 

 
Figure 4.1.  A spherical interface.  C , S , A ,and P  refer to particular points – the center 
of the spherical interface, the object point, the point at which the ray drawn hits the 
interface, and the image point, respectively.  Italicized letters refer to distances.  Greek letters 
refer to angles – note that ASCα = ∠  and CPAβ = ∠ . 
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 Pay attention to the notation in Figure 4.1.  Point C  is the center of the sphere of radius R .  
The distance between the “object” point, S , and the interface is os , and the distance between the 
“image” point, P , and the interface is is .  The angles that the incident and reflected rays make with 
respect to the normal to the interface are 1θ  and 2θ .  As usual 1θ  and 2θ  are related by Snell’s Law: 

1 1 2 2sin sinn nθ θ= .  We can relate 2θ  to β  via the law of sines2: 2sinsin

isR R
θβ

=
−

.  Relating 1θ  to α  

isn’t quite as transparent; first note that 1SAC π θ∠ = − , so ( )1 1sin( ) sin sinSAC π θ θ=∠ = − , and 

then apply the law of sines to SAC  to get: 1sinsin

oRR s
θα
+

= .  Inserting all this into Snell’s Law: 
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 We’ve derived a relation that must hold for focusing at P  to occur. In other words, we 
know what R  we need – the R  that satisfies the above expression.  Unfortunately, it depends on 
y , the position at which our ray hits the interface!  Therefore different rays will not focus to the 
same image spot. 
 
4.2  A spherical interface – the paraxial regime 
 
 What we’ve shown, in fact, is that a truly spherical interface will not serve as an ideal lens.  
There’s a way out of this, however, which is to limit ourselves to the paraxial regime, meaning that 
we consider only light that is nearly parallel with the optical axis, SP .  In other words, we consider 

                                                 
2 Recall from geometry the “Law of Sines:”  For any triangle, 

sin sin sin
A B C

a b c
= = ; see the figure for notation. 
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small α  and β .  Therefore, 
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 are small, allowing us to neglect them in the boxed 

equation: 
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and finally: 
( )2 11 2

io

n nn n
s s R

−
+ = .  A simple, clean, useful relation!  See Figure 4.2 for an 

illustration of the paths of many different rays. 
 (By the way, we could also have derived this directly from Fermat’s principle, by determining 
the R  for which SAP is an extremal path for any A.) 
 Should we be bothered by limiting ourselves to the paraxial case?  Yes and no.  In practice 
one does try to design optical systems such that beams are close to the center of spherical lens 
elements or, equivalently, to have one’s image and object distances be large compared to the size of 
the lens.  If one does this, the above relation words very well.  In practice, one works in the paraxial 
regime, and applies additional corrections if necessary. 
 We will continue thinking about the paraxial regime. 
 

 
Figure 4.2.  Focusing by a spherical interface – the paraxial regime, in which all rays from 
S  are refracted to P .  

 
4.3  Focal Points 
 
 If R , 1n  and 2n  are fixed, decreasing os  means that is  increases (and vice versa), from the 
above boxed relation.  Let’s increase is  until is →∞ , in other words parallel rays emerge from the 
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interface; what is os ?  From above:  
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The spherical waves from the point source turn into plane waves – see Figure 4.3.   

 
Figure 4.3.  Light emanating from the object focal distance is focused to an image distance 
of infinity (i.e. rays become parallel).  

 
 The same holds if we don’t consider a “semi-infinite” medium on the right, but rather a 
finite lens with a spherical surface at the left and a flat surface at the right – a plano-convex lens 
(See Figure 4.4.)  Note that since the right edge is flat, all rays are normal to it, and there is no 
“bending” of the rays due to refraction.  Plano-convex lenses are very useful. 

 
Figure 4.4.  Parallel rays generated by a plano-convex lens from a source located at the 
object focal length. 

 
 We can of course consider the opposite situation, in which plane waves (parallel rays from 

os = ∞ ) are focused to an image at some is .  This particular is is denoted if , the image focal 

length. 
 
4.4  Real and Virtual Images 
 
 Solving the boxed lens equation in Section 4.2 for is , we have 
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the interface.  The rays from S  converge at P .  To an observer at the right, it looks as if light is 



Notes on Optics – R. Parthasarathy – 2008    Page 31 

emanating from point P .  We have what’s called a “real image” at P  (see Figure 4.5).  If, for example, 
we put a power meter at P , we detect a high degree of power due to the focused light 
 
 If oos f< , then 0is < , and point P  is to the left of the interface.  The rays don’t actually hit 
point P , but they appear to an observer at the right as if they are emanating from P  (see Figure 4.5).  
We have what’s called a “virtual image” at P .  If, for example, we put a power meter at P , we do 
not detect a high intensity focused spot, since there is no “spot” there. 

 
Figure 4.5.  Real and virtual images.  Left: light emanates from P.  Right: Light looks to an 
observer like it’s emanating from point P located to the left of the interface. 

 
4.5  Concave lenses 
 
 The same analysis works for concave lenses, but we treat R  as negative ( 0R < ).  Since  

R
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=+ , if 2 1n n>  then 0is <  – we have a virtual image (see Figure 4.6). 

 
Figure 4.6.  A convex lens.  Note the virtual image (if 2 1n n> ). 

 
4.6  Thin lenses 
 
 Let’s glue one lens of radius of curvature 1R  onto another of 2R .  (See Figure 4.7.)  We’ll 
consider thin lenses, and so neglect the lens thickness d  (i.e. we’re assuming d is smaller than other 
lengths involved).   
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Figure 4.7.  Focusing light with a thin lens (imagine d  is small). 

 
The object and image lengths for “lens 1” (the left half of the lens) are related by  
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, where we keep track of which index of refraction is which.   

We need to adopt a consistent set of sign conventions for the radii.  As noted above, a convex 
“left” lens has 0R > , and a concave “left” lens has 0R < .  For the right side lens, these are 
switched.  Here are some illustrations of these rules: 

 

Biconvex, R1>0, R2<0 

 

Planar convex, R1=∞, R2<0 
  

 

Planar convex, R1>0∞, R2=∞ 
 

 

Meniscus convex, R1>0, R2>0 

 

Biconcave, R1<0, R2>0 

 
 

Returning to our thin lens, adding the two expressions above: 
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For a thin lens in air, 1 1n ≈ ; 2 lensn n= , giving us the Thin Lens Equation, or 
Lensmaker’s Formula: 
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The focal length, f , is given either by so or si →∞ (it doesn’t matter which): 
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important relations for the design of optical systems. 
 
 For example:  Consider parallel rays incident on a glass ( 1.5n = ), 

1R = ∞ , 2 50R = −  mm plano-convex lens.  (See the figure, right, and 
note the relation between the shape of the lens surfaces and the signs 
of the R ’s.)  Where will these rays be focused to?  Answer:  

mmf 50
1)15.1(1

−= , so f = 100 mm, is  = 100 mm. 

 

 
 
4.7  Magnification 
 
 Lenses magnify objects.  The magnification can be >1 or <1 (which Hecht calls 
“minification”).  See the figure of the thin lens, below, which is magnifying an extended object (i.e. 
not a point source) – in this case, an apple. 

 
Figure 4.8.  Lenses magnify images – schematic. 
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 Points oF  and iF  are each a distance f , the focal length, from the lens.  Consider light 
emanating from the top of the apple.  The ray that goes through oF  will emerge from the lens 
parallel to the axis (think: why?).  The ray the leaves the apple parallel to the axis will go through iF  
(think: why?).  The ray that goes through the center of the lens will be undeflected in the thin lens 
limit – see Hecht for a discussion. 
 
 The magnification, MT, is defined to be the height of the image relative to the height of the 

object – i.e. 
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As the object distance xo is lowered, the magnification increases.   
 (Think about what happens if xo < 0, i.e. the object is closer than the focal point.  Drawing rays, you should 
be able to convince yourself that the lens cannot form an image of the object.) 
 
 
4.8  Resolution 
 
 When considering single-slit diffraction, we realized that θmin ≈ λ/a, where λ is the 
wavelength of light and a is the diameter of the imaging device, is the angular resolution of the 
device.  Two objects must have an angular separation of at least θmin if they are to be resolved as 
separate objects.  Using lenses to magnify objects, this angular resolution criterion still holds.  
Moreover, the fact that the object distance can’t be closer than the focal length turns our resolution 
relation into a distance criterion, as we’ll (probably) see in Problem Set 4. 
 
 To be resolvable by a magnifying lens, two objects must be separated by at least xmin 

≈ λ.  As before, we’re ignoring factors of 2, etc., in this expression.  The “true” expression, if you’re 
interested, is xmin = λ/(2 n sinθm), where n is the index of refraction of the medium and θm is the 
maximal angle of the “cone” of light the lens collects.  For optical wavelengths (λ ≈ 500 nm), 
imaging in water (n=1.3), this expression sets a fundamental limit of at best ≈ 200 nm for the 
resolution of microscopes.  As we’ll see later in class, many people are working on clever tricks to 
get around this “diffraction limit.” 


