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5    R E F L E C T I O N  A N D  T R A N S M I S S I O N  ( F R E S N E L ’ S  E Q U A T I O N S )  
 
 The law of reflection ( r iθ θ= , where r  and i  refer to reflected and incident rays – see 
Problem Set 3) and Snell’s Law ( sin sini i t tn nθ θ= , where t  refers to the transmitted ray) give the 
directions of reflected and transmitted rays at boundaries (Figure 5.1).  What are the amplitudes of 
the electromagnetic waves?  In other words, how much light is reflected and transmitted? 

 

Figure 5.1.  Reflection and refraction at an interface.  The incident wave (wavevector ik ) is 

reflected (wavevector rk ) and transmitted (wavevector tk ).  What are the amplitudes of 
the reflected and transmitted waves? 

 
 Similar questions arise when considering other sorts of waves hitting boundaries – for 
example waves on the 1D strings we examined last quarter, incident at a boundary between two 
media with different speeds.  In all these situations, transmission and reflection are analyzed by 
considering the boundary conditions imposed by the junction.  As we’ll see, our analysis of 
electromagnetic waves will reduce in the appropriate limit to that of simple strings. 
 
 To consider the general case of a plane electromagnetic wave hitting a surface at some angle 
θi (with respect to the normal), we’ll have to separately consider the components with electric field 
perpendicular and parallel to the plane of incidence.  (The incident, reflected, and transmitted 
rays all lie in the plane of incidence, POI, which also includes the normal to the surface.) 
 
First, some statements that follow from a study of electromagnetism.  (We won’t derive these.) 

• The electric and magnetic field vectors of an EM wave are perpendicular to each other. 
• BE × points along k , the wavevector, i.e. along the direction of propagation. 

• The field amplitudes are related by BvE = , where v = c/n is the wave speed. 
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The boundary conditions at the interface between media are: 
(i)  The tangential (i.e. parallel to the interface) components of the electric field, E  are 
continuous across the boundary. 
(ii)  The tangential (i.e. parallel to the interface) components of μ/B , where μ is the 
magnetic permeability of the medium, are continuous across the boundary. 

 
Let’s consider the two cases. 
 

5.1  Case I: E  perpendicular to the plane of incidence 
 
See Figure 5.2.  (Note that a circle with a dot in it indicates a vector, in this case an electric field 
vector, that points out of the page towards you.) 

 

Figure 5.2.  Electric and magnetic field vectors for light polarized with E  perpendicular to 
the plane of incidence. 

 
The electric field vectors are completely tangential to the interface.  The magnetic field vectors are 
not.  Applying boundary condition (i) to the amplitudes (E0) of the electric fields: 

tri EEE 000 =+  
Applying boundary condition (ii) to the amplitudes (B0) of the magnetic fields: 
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Using B0=E0/v (from above), vi=vr (since they are in the same media), θi=θr (law of reflection), and 
vi=c/ni, we can write the above relation as: 
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Combining this with the boundary condition (i) equation above, substituting to eliminate E0t (some 
dull algebra worked through in class), we can solve for the ratio of the reflected wave amplitude 
to the incident wave amplitude: 
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Similarly solving instead for the ratio of the transmitted wave amplitude to the incident wave 
amplitude: 
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Typically, one deals with nonmagnetic materials:  0μμ ≈ , the permeability of free space.  The above 
equations simplify, yielding two of the four Fresnel Equations, for the amplitude reflection 
coefficient r⊥ and the amplitude transmission coefficient t⊥. 
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5.2  Case II: E  parallel to the plane of incidence 
 
See Figure 5.3.  (Note that a circle with a dot in it indicates a vector that points out of the page 
towards you.) 

 

Figure 5.3.  Electric and magnetic field vectors for light polarized with E  parallel to the 
plane of incidence. 

Applying the boundary conditions to this geometry (which you’ll do in the homework) leads to: 
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For typical nonmagnetic media we get the other two Fresnel Equations: 
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5.3  Brewster’s Angle 
 
 Let’s plot r⊥  and r  as a function of iθ  for light incident from air ( 1 1n = ) to water 

( 1.33tn = ) – see Figure 5.4. 

 
Figure 5.4.  r⊥  and r  for light incident from air to water, as a function of incidence angle.  

Note that r  crosses zero! 

 
 We see something very interesting: there is some particular iθ  for which the reflection 
coefficient is zero for light with its electric field parallel the plane of incidence.  There is no such 
angle for the perpendicular polarization. 
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 We could examine this more carefully and show, after lots of lines of algebra, that if t in n> , 
0r =  at one particular incident angle, iθ .  This angle is called Brewster’s Angle, pθ , and is given 

by tan t
p

i

n
nθ = .  All the parallel-polarized light is transmitted.   

 What about the perpendicular polarization?  Again, we could show that there is no angle that 
gives 0r⊥ = . 
 Therefore, shining randomly polarized light incident at the Brewster angle, the reflected light 
is completely polarized with its electric field perpendicular to the plane of incidence. 
 As I’ll discuss at some point in class, knowing the mysteries of the Brewster’s Angle has 
saved me from difficult real-life dilemmas! 
 
5.4  Waves on Strings at Boundaries 
 
 How does this relate to wave propagation in a 1D string?  We could quite simply derive 
reflection and transmission amplitudes by continuing our analysis of last quarter3.  Let’s instead use 
the Fresnel equation analysis above.  For the 1D string, there is, by definition, only one dimension!  
So only 0iθ =  is meaningful, for which 0tθ =  (Snell’s Law).  The reflection amplitude 
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.  In other words, the amplitude of the reflected wave is 

proportional to the difference in velocities of waves in the two media.  (In case you’re worried 
about why r⊥  and r  have opposite signs, see Hecht section 4.6.3.) 
 
 
Numbers:  For normal incidence ( 0iθ = , 0tθ = ) at an air (ni =1) / glass (nt = 1.5) interface, the 
reflection amplitude 0.2r = . 
 
 

                                                 
3 See, for example, Chapter 8 of A. P. French, Vibrations and Waves. 


