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Problem Set 2: SOLUTIONS 

 
 
(1, 10 pts.)  2-slit interference.  

 
For parts (c) and (d):  Suppose that in front of one of the slits we insert a device that shifts the phase 
of the light passing through it by 0φ  radians.   



(c)  At 0θ = , the phase shift due solely to geometry is zero.  Therefore the total phase shift is π , 
and so we have destructive interference, and a dark spot. 

(d, 5 pts.)  The total phase difference between the two paths is now 0sin2 Dπφ θ φ
λ

Δ = +  -- the 

first term is from geometry just as in part (a), and the second is our “additional” shift.  Again via 
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as in part (a), but “shifted.” Consider the maximum that “used to be” at 0θ = , for which the 
argument of the cosine was zero.  (We could consider any point on the curve; this one is 
particularly simple.)  Now, 0θ =  is no longer a maximum, since the argument of the cosine is 
not zero.  More explicitly: the “new” position of that maximum is at the angle for which 
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(2, 4 pts.)  No interference.   
 The key issue here is coherence – see the notes, Section 1.2.4.  (I also referred to this in 
email.)  For there to be an interference pattern, we need a well-defined phase difference between the 
interfering  paths – see, for example, Problem 1.  There are two reasons that Mr. K.’s light bulb 
setup will not create interference fringes – each reason alone is sufficient to wash out any 
interference, but I’ll describe them both: 
 (i)  From the notes: “The light from a light bulb is emitted by many independent sources 
throughout the filament...  Each emitted wave has a random phase difference relative to any other.” 
So there can’t possibly be any well-defined phase relation between one light bulb and another, since 
all the individual waves emitted by these incoherent sources have some random phase offset.  If one 
wave is “in phase” and adds constructively, we can find another emitted by some other part of the 
filament that is “out of phase,” and adds destructively, for example.  We average over all possible 
phase relationships. 
 (ii)  The emission is incoherent!  (More precisely, it has a short coherence length.)  
Therefore, even if there is temporarily some well-defined phase relation between a wave emitted by 
one bulb and a wave emitted by another, it only lasts a distance 10cL μ≈ m, or a time 

13/ 10c cL ct −≈ ≈ seconds.  After this it is “randomized” and we have some new phase relation.  So 
again, we average over all possible phase relationships. 
 Some people mistakenly thought that the fact that the screen distance is an integer multiple 
of cL  is somehow relevant.  It isn’t.  (Why would it be?)  Please think about this. 



 
 
 
 
(4)  Single-slit interference.   
For N slits each separated by D: 
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ND a→ .  Note that 1I  goes to zero as N →∞ , which makes it an inconvenient variable for 
considering the overall amplitude.  Therefore as suggested, we think about the intensity we measure 
at θ=0, which is I(θ=0) = N 2I1; we’ll call this 0I .  Therefore 
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For the rest, we need to be careful.  There are (at least) two approaches we could take. 

(i) We note 0
2 0I

N
→  and ( )2sin sin / 0Dπ θ λ → , so we might apply L’Hopital’s rule.  Our 

numerator depends on N  and our denominator on D , which at first sight appears problematic 
until we realize that we can just write /N a D= .  We can apply L’Hopital’s rule.  It’s laborious, but 
it works. 



(ii)  We’ll be considering 0D → , and so ( )sin / 0Dπ θ λ → , so the dominant term in the Taylor 

expansion of ( )sin sin /Dπ θ λ  will be the first one, allowing us to write 
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Defining sin /aβ π θ λ= , we see that  
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(b)  To evaluate 0
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x→  , we can apply L’Hopital’s rule, or use Taylor expansion.  Let’s do the 

former.   
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(5)  Two infinitely narrow slits.  Note that the zeros are at ,2si ,3 ,...n D D D
λ λ λθ =

 

 
 
Two finite-width slits.  The above graph is “multiplied” by the single 
slit diffraction pattern, which describes how the light from each 
slit behaves as a function of angle.  Note that the width of the 

single-slit pattern is / aλ , and since a  must be less than D , 
the single slit “width” is wider in angle than the fringe spacing of 
the two-slit pattern.  Therefore: 
  
 


