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Problem Set 3: SOLUTIONS
(1) N-slit interference.
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All the maxima, e.g. @ =0, are equivalent, so we’ll consider #=0. 1(6=0) —)6, so we apply

L’Hopital’s rule, differentiating numerator and denominator:
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rule again. First, it saves some writing to use the identity SiN(2X)=2sinXCOSX, so the above

equation becomes
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Another way to derive this is to Taylor expand | (&) for small 6.

(2, 4 pts.) Diffraction gratings and extrasolar planets.
Consider light of wavelength 4. Its first diffraction intensity maximum is located at Siné = % ,

and the zero nearest this is at Sin@ = % +/%\ID , as we know from the N-slit intensity function.

We wish to resolve light of wavelength 4 +AA . What does this mean? The “blob” of light
present at its first diffraction maximum must be distinguishable from the “blob” of the light of
wavelength 4. It’s first diffraction maximum should occur at an angle at least as large as the zero of
the light of wavelength A, or else we could not differentiate the two. Therefore, we need
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>—+ , ot AA>—. 'The Doppler effect relates A4 and the causative velocity:
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AA =—A. Therefore, the velocity shifts we can observe are: — A4 > N ie. |AV > NI Note that
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Avis independent of A! For N =10°, the minimum resolvable AV is Av=23000 m/s. (As noted
in the assighment, this is the minimum resolvable AV from just looking at the shift of one point on
the spectrum; in practice, the entire spectrum can be examined, allowing much more precise
determinations of AV .)



(3, 1 pt.) Single-slit diffraction figure.
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(4, 4 pts.) The Sun.

(a) Hold a ruler at arm’s length, measure the apparent diameter d of the moon along the ruler, and
measure the length L of your arm. Note that tand=d /L. Since d < L you can make use
of the small angle approximation tan @ = @, which is of course only valid for € measured in
radians. You should find that the angular diameter of the moon (or sun) is about or 0.01
radians, or 0.5 degrees. The same holds true for the sun, whose observation requires a bit
more caution.

Of course, there are other ways to measure this as well. Here’s one, from our TA (Yan):
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(b) The angular resoluton of our eyes at visible wavelengths (A=0.5um) is
5x10°m

=1l az%:1o4 radians. 'This is much smaller than the 0.01 radian angular
X m

diameter of the sun or moon, and so we can resolve these objects.



(c) At radio wavelengths, the resolution of a 2mm aperture (like our pupils) would be

Im
O~ Alax————=10° radians. This is much larger than the angular diameter of the sun or

2x107°m
moon, and so we could not resolve these objects.
(d) If we want our angular resolution to be <0.5 degrees, or 0.01 radians, we need 4/a<0.01,

ie. a>A1/0.01. The frequency of the radio wave f =1400x10° Hz, so the wavelength
A=c/ f =0.21m. Therefore, we need a>0.21m/0.01=21m -- at least a 21 meter separation.

[to next page]



(5) Fourier Transforms and Apertures.

if
The function: y(X) = {% I |X| A

, as sketched below. Since it’s defined piecewise, let’s
0,if x> /

perform the integral piecewise:
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(6) Law of Reflection.
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(7) A prism.
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(8) Galilean Telescope.
(@) Lens1: R =0, R,=+200 cm (concave, right side)
Lens 2: R, =+450 cm (convex, left side), R, = 0.
(b) Let’s consider each lens separately.
First consider lens 1. The focal length f, is given by fi: (n-1) (%—RLJ Therefore:
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f, = {(n —1)(0— 2000 ﬂ =-400cm, using N =1.5. The “object” length S ; =0, since the rays



1 1 1
are parallel to the optical axis. Applying the thin lens equation: _+_:T yields

s, = f, =—400cm. There is a virtual image to the left of the lens — see figure.
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Now consider lens 2, with its “object” being the image of lens 1, located |Si1| = | f1| to the left of lens

1. We want the image of lens 2 to be rays parallel to the optical axis. So for lens 2, §;, =00 . The

object length for lens 2 is S, =d —S,,, where d is the separation between the lenses (see Figure).
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The focal length f, =| (n—1) 2500m -0 || =900cm. Thinlens: —+—= %0
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q ! +0= fi ,and d =5, + f, =—-400cm+900cm. Therefore d =500cm. This is the desired
—Si 2

separation. Note that d =f +f, =1, —| f1|.
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