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Problem Set 3: SOLUTIONS 

 
 
(1)  N-slit interference.  
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L’Hopital’s rule, differentiating numerator and denominator: 
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rule again.  First, it saves some writing to use the identity sin(2 ) 2sin cosx x x= , so the above 
equation becomes 
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 Another way to derive this is to Taylor expand ( )I θ  for small θ . 
 
 
(2, 4 pts.)  Diffraction gratings and extrasolar planets.   
Consider light of wavelength λ .  Its first diffraction intensity maximum is located at sin D

λθ = , 

and the zero nearest this is at sin D ND
λ λθ = + , as we know from the N-slit intensity function.  

 We wish to resolve light of wavelength λ λ+ Δ .  What does this mean?  The “blob” of light 
present at its first diffraction maximum must be distinguishable from the “blob” of the light of 
wavelength λ .  It’s first diffraction maximum should occur at an angle at least as large as the zero of 
the light of wavelength λ , or else we could not differentiate the two. Therefore, we need 
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vΔ is independent of λ !  For 510N = , the minimum resolvable vΔ  is 3000vΔ =  m/s.  (As noted 
in the assignment, this is the minimum resolvable vΔ  from just looking at the shift of one point on 
the spectrum; in practice, the entire spectrum can be examined, allowing much more precise 
determinations of vΔ .) 
 



 
(3, 1 pt.)  Single-slit diffraction figure.   

 
 

(4, 4 pts.)  The Sun.   
(a) Hold a ruler at arm’s length, measure the apparent diameter d of the moon along the ruler, and 

measure the length L of your arm.  Note that tan /d Lθ = .  Since d L  you can make use 
of the small angle approximation tanθ θ≈ , which is of course only valid for θ  measured in 
radians.  You should find that the angular diameter of the moon (or sun) is about or 0.01 
radians, or 0.5 degrees.  The same holds true for the sun, whose observation requires a bit 
more caution. 

Of course, there are other ways to measure this as well.  Here’s one, from our TA (Yan): 

 
 

(b)   The angular resolution of our eyes at visible wavelengths ( 0.5 mλ μ≈ ) is 
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 radians.  This is much smaller than the 0.01 radian angular 

diameter of the sun or moon, and so we can resolve these objects. 



(c)  At radio wavelengths, the resolution of a 2mm aperture (like our pupils) would be 
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 radians.  This is much larger than the angular diameter of the sun or 

moon, and so we could not resolve these objects. 
(d)  If we want our angular resolution to be 0.5<  degrees, or 0.01 radians, we need / 0.01aλ < , 

i.e. / 0.01a λ> .  The frequency of the radio wave 61400 10f ×=  Hz, so the wavelength 
/ 0.21c fλ = = m.  Therefore, we need 0.21 / 0.01 21a m m> = -- at least a 21 meter separation. 

 
 
[to next page] 



 
(5)  Fourier Transforms and Apertures. 
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perform the integral piecewise: 
 

 



 
(6)  Law of Reflection. 
 

 



 
(7) A prism. 

 
 
(8)  Galilean Telescope.   
(a)   Lens 1:  1R = ∞ , 2 200R = +  cm (concave, right side) 
 Lens 2:  1 450R = +  cm (convex, left side), 2R = ∞ . 
(b)  Let’s consider each lens separately.   

 First consider lens 1.  The focal length 1f  is given by 
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, using 1.5n = .  The “object” length 1os = ∞ , since the rays 



are parallel to the optical axis.  Applying the thin lens equation: 
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1 1 400cmis f= = − .  There is a virtual image to the left of the lens – see figure. 

 
Now consider lens 2, with its “object” being the image of lens 1, located 1 1is f=  to the left of lens 
1.  We want the image of lens 2 to be rays parallel to the optical axis.  So for lens 2, 2is = ∞ .  The 
object length for lens 2 is 2 1o ids s= − , where d  is the separation between the lenses (see Figure). 

 

The focal length ( )
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separation.  Note that 1 2 2 1f fd f f= =+ − . 
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