Prof. Raghuveer Parthasarathy
University of Oregon; Winter 2008

Physics 352

Problem Set 4

Due date: Friday, Feb. 8, 5pm. (Turn in to the assignment to the box outside my door.)
Reading: Notes on the Binomial Distribution.
Please note: This problem set is due in two days. However, it is very, very short. The exercises are intended to review concepts that you've seen earlier.
(1, 3 pts.) Flipping coins. Suppose you flip $N=3$ fair coins (i.e. coins with an equal probability of "heads (H)" and "tails (T)").
(a, 1 pt.$)$ Make a list of all possible outcomes. How many are there?
(b, 1 pt.) Make a table of the number, $g(k)$, of outcomes with k heads, where $k=\{0,1,2,3\}$. This is referred to as the multiplicity of the "macrostate" with k heads.
(c, 1 pt .) Show that the $g(k)$ you counted agrees with that given by the binomial distribution:

$$
g(k)=\frac{N!}{(N-k)!k!}
$$

(The exclamation marks indicate factorials).
(2, 7 pts.) Logarithms. The natural logarithm function, \ln, is the inverse of the exponential function. It can be defined by the relation

$$
e^{\ln x}=x,[\text { Equation 1 }]
$$

or equivalently

$$
\ln \left(e^{x}\right)=x \quad[\text { Equation 2] }
$$

for any positive real number x.
(a, 1 pt.) Graph $\ln (x)$.
(b, 1 pt.) Starting from Equation 1, prove that $\frac{d}{d x} \ln x=\frac{1}{x}$. (Hint: Differentiate each side of Eq. 1 with respect to x.)
(c, 2 pts.) Prove from either Eq. 1 or 2 that $\ln (x y)=\ln (x)+\ln (y)$ for any positive numbers x, y.
(d, 1 pt.) Using your result from part (c), prove that $\ln \left(x^{n}\right)=n \ln (x)$ for integer n.
(e, 2 pts.) Show that for small $x, \ln (1+x) \approx x$.
(3, 1 pt.) Partial Derivatives. The partial derivative $\frac{\partial}{\partial x} f(x, y)$ is the derivative with respect to x, keeping y fixed. For example: $\frac{\partial}{\partial y}\left(x^{2}+x y+y^{3}\right)=x+3 y^{2}$. The notation $\frac{\partial^{2}}{\partial x \partial y}$ indicates taking the partial derivative with respect to y, then the partial derivative of this with respect to x. The volume of a cylinder of radius r and height h is $V=\pi r^{2} h$. Show that $\frac{\partial^{2} V}{\partial r \partial h}=\frac{\partial^{2} V}{\partial h \partial r}$. (In general, for "nice" functions, the order of differentiation does not matter.)

