## Problem Set 4: SOLUIIONS

(1) Flipping coins.
(a) Possible outcomes: HHH, HHT, HTH, HTT, THH, THT, TTH, and TTT - there are eight.
(b)

| k | $\mathrm{g}(\mathrm{k})$ |
| :--- | :--- |
| 0 | 1 |
| 1 | 3 |
| 2 | 3 |
| 3 | 1 |

(c)

| k | $\frac{N!}{(N-k)!k!}$ |
| :--- | :--- |
| 0 | $\frac{3!}{(3-0)!0!}=\frac{3!}{3!}=1$ |
| 1 | $\frac{3!}{(3-1)!1!}=\frac{3!}{2!}=3$ |
| 2 | $\frac{3!}{(3-2)!2!}=\frac{3!}{2!}=3$ |
| 3 | $\frac{3!}{(3-3)!3!}=\frac{3!}{3!}=1$ |

The table is the same as that of (b).
(2) Logarithms.
(a) see plot, below. Note that $\ln (1)=0$.
(b) Start from $e^{\ln x}=x$, [Equation 1]. Differentiate. Using the "chain rule" on the left side:

$$
\begin{aligned}
& \frac{d}{d x} e^{\ln x}=e^{\ln x} \frac{d}{d x}(\ln x)=x \frac{d}{d x}(\ln x) . \text { The right side is simply: } \frac{d}{d x}(x)=1 . \text { Therefore: } \\
& x \frac{d}{d x}(\ln x)=1, \text { so } \frac{d}{d x}(\ln x)=\frac{1}{x} .
\end{aligned}
$$

(c) From eq. $1, e^{\ln (x y)}=x y . e^{\ln x}=x$ and $e^{\ln y}=y$, therefore $e^{\ln (x y)}=e^{\ln x} e^{\ln y}$. Taking the log of each side, $\ln (x y)=\ln (x)+\ln (y)$.
(d) $\ln \left(x^{n}\right)=\ln (x x x x \ldots x)$ (n factors of x in the product) $=\ln (x)+\ln (x)+\ldots \ln (x)$ (n terms in the sum) via part (c), so $\ln \left(x^{n}\right)=n \ln (x)$.
(e) Taylor expansion: $\ln (1+x)=\left.\ln (1+x)\right|_{x=0}+\left.\frac{d}{d x} \ln (1+x)\right|_{x=0} x+\left.\frac{d^{2}}{d x^{2}} \ln (1+x)\right|_{x=0} x^{2}+\ldots$ Using part (b), this is: $\ln (1+x)=0+\left.\frac{1}{1+x}\right|_{x=0} x+\ldots=x+\ldots \quad$ To lowest order, $\ln (1+x) \approx x$.

(3.) Partial Derivatives. $V=\pi r^{2} h \cdot \frac{\partial V}{\partial r}=2 \pi r h . \frac{\partial V}{\partial h}=\pi r^{2}$.

$$
\begin{aligned}
& \frac{\partial^{2} V}{\partial r \partial h}=\frac{\partial V}{\partial r}\left(\pi r^{2}\right)=2 \pi r \\
& \frac{\partial^{2} V}{\partial h \partial r}=\frac{\partial V}{\partial h}(2 \pi r h)=2 \pi r
\end{aligned}
$$

The two are the same.

