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Physics 352:  Problem Set 6 
 
 
Due date:  Wednesday, Feb. 20, 5pm. 
Reading:  K&K Chapters 1-2. 
 
Comments: 

• The first few problems are mathematical exercises related to tools and techniques we’ll use in 
the course.  I recommend doing them soon.  The last few problems deal with issues of 
probability and entropy.  

• For a few problems, you may use the following definite integral of a Gaussian function: 
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(1, 5 pts).  The Gamma Function.  The gamma function, ( )xΓ , is defined by: 
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0
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∫Γ = .  We’ll make use of it later in the course. 

(a, 1 pt.) Show that (1) 1Γ =  
(b, 2 pts.) Show that ( ) ( 1)x x xΓ = Γ + , and therefore that ( 1) !n nΓ + =  for integer n  (the 

exclamation mark indicates n -factorial).  Thus the gamma function provides an “extension” of 
factorials from the integers to all the real numbers.  (Hint: Integrate by parts.) 

(c, 2 pts.)  Show that π=⎟
⎠
⎞

⎜
⎝
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2
1 .  (A big hint: make a substitution u t= , and then use Gaussian 

integral given at the top of the assignment.)  You may not use any expressions from a table of 
integrals. 

 
 
 
(2, 4 pts.)  Averages.  For a “discrete” distribution in which each possible state has probability ip , 

the average (or mean) value of some function A  is i
i

iA A p∑= , where iA  is the value of A  

in state i .  (Note that all the ip  must add to 1; in other words 1i
i

p∑ = .)  For example, if I flip a 

coin, there are two states, heads and tails, each with probability 1 1/ 2p = .  Suppose I take 2 
steps to the left if I flip “tails” and 3 to the right if I flip “heads,” so that 3headsA = + and 

2tailsA = − .  Then A , my average motion per step is ( ) ( )1 1 12 3
2 2 2i i

i
pA A∑= = − + = + .   



(a, 1 pt.)  Consider a normal six-sided die, in which the probability of any face coming up is 1
6 .  

Suppose you gain $( 3n − ) for each roll of the die, where n  is the number of dots on the die 
face you roll.  On average, how much money will you make per roll? 

 
We often deal with continuous probability distributions ( )p x  – the number ( )p x dx  gives the 
probability that x  will have a value in the range [ ],x x dx+ .  The average (or mean) value of a 
function ( )f x  is given by 

( ) ( ) ( )f x f x p x dx∫= , where the integral is over the entire domain of x. 
Consider a Gaussian probability distribution: 
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don’t have to verify.) 
(b, 1 pt.)  Show that 0x = .  (Hint: you can evaluate this without doing any integrals – draw the 

integral!) 
(c, 2 pts.)  Show that 2 2x σ= .  (σ is the standard deviation of the distribution.)  You may use the 

Gaussian integral provided at the top of the assignment, but must derive all other expressions.  
(Hint: integration by parts, with u x= , may be useful.) 

 
 
 
 
(3, 1 pt.)  More probabilities.  The combinatoric argument that gives us the binomial distribution 
is easily extended to objects with more than two possible states – for example, a six-sided die.  
Consider an object with t  possible states – for the die, 6t = .  If we roll our die N  times, what is 
the number of configurations with 1n  ones, 2n  twos, ... and 6n  sixes?  It is  
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Ω = .  (You don’t have to prove this.) 

So, for example, if we roll a die 8 times and want to know how many ways there are to get 1 one, 5 

twos, 0 threes, 0 fours, 2 fives, and 0 sixes, it’s 8! 8 7 6 5 4 3 2 1 168
1!5!0!0!2!0! 5 4 3 2 1 2

× × × × × × ×
= =

× × × × ×
 

possible configurations.  (12222255, 21222255, 22122255, 51225222, etc.). 
 Consider a four-sided die, rolled five times.  How many configurations are there with 2 
ones, 0 twos, 3 threes, and 0 fours? 
 Yes, this is a boring problem.  I’m assigning it because it leads us to problem 5, which is 
interesting.  First another “simple” observation:  Given the above distribution, the probability of 

rolling face “ i ” is i
i

np
N

=  -- for example, for our 8 rolls of a 6-sided die above, 1
1
8

p = , 2
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p = , 

3 0p = ,  etc.  Note that 1ip∑ =  -- the probabilities must add to one.  (Similarly, note that 

in N∑ = .) 
 
 



(4, 5 pts.)  Probability and entropy.  In class, we’ve defined entropy: lnσ = Ω , where Ω  is the 
number of available states.  Here, we’ll derive a different, but equivalent, expression for the entropy 
that relates it to probabilities.  (This turns out to be surprisingly useful, as we’ll see later.)  Consider 

as in Problem 3 N  elements each with t  possible states, so that 
1 2
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Ω = .  Show that for 

the usual large N , the entropy ln( )i i
i

N p pσ ∑= − , where the sum runs over all t  states. 

Here’s a sketch of what to do: 
• Start from lnσ = Ω .   
• Simplify the logarithm using product and quotient rules.  Make use of Stirling’s 

approximation: ln( !) ln NN N N≈ − , and note that in N∑ = . 
• Rewrite your answer in terms of probabilities, ip , using the relation from Problem 4.  You 

should find something like ( )ln lni i
i

N N p N p Nσ ∑= − .  Simplify your relation.  Note that 

1ip∑ = , and also note that constants can be factored out of sums – i.e. i
i

i
i

ax a x∑ ∑= . 

 
 
 
(5, 4 pts.)  The binary spin system.  Consider, as discussed in class, a binary spin system with 
N r−  “up” spins each with energy +ε  and r  “down spins” each with energy −ε .  We’ll again 

define the spin excess 2s N r= − , so that 
2

N sr −
=  and 

2
N sN r +

− = .  Consider s N , and 

show that the entropy 
2

2( ) ln 2
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N
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ε
, where E  is the total energy.  Note that we’ve done 

this derivation in class, except for some algebraic details which you can now fill in. 
 
 
 
(6, 7 pts.)  Distribution of the multiplicities for two systems.  In class we considered two initially 

isolated systems, with energies 1E  and 2E , brought into “thermal contact” so that 1E  and 2E  
could vary as long as the sum 1 2E EE= +  remained fixed.  We argued that in general, the 
degeneracy of the supersystem would be maximal for some 1E  between 0 and E   – this 
followed from assuming that 1Ω  and 2Ω  are increasing functions of 1E  and 2E , respectively.  
This is a very reasonable assumption – there should be more states available as we increase the 
energy of a system – and it’s consistent with what our “example” systems of a particle-in-a-box 
and a hydrogen atom show.  We’ve discussed a very specific example – the binary spin system.  
Here, let’s consider a “somewhat” specific example. 

 Consider two systems for which the number of available states varies as a power of the energy.  

In other words: 1 1aE αΩ =  and 22 bE βΩ = , where 1α >  and 1β >  and a  and b  are 
constants.  The systems are brought into thermal contact.  Again, the total energy E  is fixed. 



(a, 1 pt.)  From the fundamental definition of temperature, determine expressions for 1τ  and 2τ  as 
functions of 1E  and 2E , respectively. 

(b, 2 pts.)  Find the equilibrium (i.e. most probable) energies of system 1 and system 2 by 
determining the overall degeneracy, Ω , and finding where its derivative is zero.  Your answer 
will depend on α , β , and E . 

(c, 1 pt.)  What happens to your answer for part (b) if β
α

 gets large?  Does this make sense? 

(d, 2 pts.)  Show that the equilibrium energies you found in part (b) satisfy the relation 1 2τ τ= , using 
your relations from (a). 

(e, 2 pts.)  Suppose a b=  and α β= .  Suppose initially, System 1 has energy 3
4

E  and System 2 

has energy 4
E .  The two systems are brought into thermal contact.  If we think only about the 

contents of System 1: Has the entropy of System 1 increased or decreased relative to its isolated 
state?  (You should find that it has decreased.)  Mr. K. has heard people whispering on the street 
that entropy always increases, and so is bothered by your claim.  What do you say to him? 

You might find the following plot, of Ω  vs. 1/E E  for a b=  and α β= , interesting.  You don’t 
have to do anything with it. 

 


