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Physics 352:  Problem Set 7 
 
 
Due date:  Wednesday, Feb. 27, 5pm. 
Reading:  K&K Chapter 3. 
 
 
(1, 2 pts.)  An electrostatic potential.  Your cells maintain electrostatic potential differences 
between their inside and outside.  Consider a potential difference of 100V = + mV such that the 
inside is at a higher potential than the outside, and a singly-charged ion like Na+ (charge q = 
+ 1911. 06 −× C).  At standard body temperature, what is the probability that the ion will be inside the 
cell?  (Boltzmann’s constant 231.38 10Bk −= ×  Joules/K.)  [Note: this is a ridiculously simplified view 
of cellular ion potentials – we’ll get better later...] 
 
 
(2, 4 pts.)  The CO2 molecule, revisited.  Last quarter, we examined the classical vibrational 
motion of a CO2 molecule and found two normal mode frequencies, 1f  and 2f .  (Don’t worry if 
you were not in my 351 course.)  This result is true quantum mechanically as well.  Corresponding to 
each normal mode are many possible states, each with a different energy separated by energy hf , 
where f  is the normal mode frequency and h  is Planck’s constant, 6.63 ×10-34 Joules-seconds.  
Specifically, the allowed energy levels for mode 1 are 

 1 1 1
1
2n n hfE ⎛ ⎞= −⎜ ⎟

⎝ ⎠
, where 1n is a positive integer ( 1n  = 1,2,3,...),  

and for mode 2 are 

 2 2 2
1
2n n hfE ⎛ ⎞= −⎜ ⎟

⎝ ⎠
, where 2n  is another positive integer ( 2n  = 1,2,3,...). 

The lowest energy state of any mode ( 1n = ) is referred to as the “ground state.”  The normal mode 
frequencies are measured to be 1 40f =  THz and 2 70.5f =  (1 THz = 1012 Hz).  
 Suppose one examines a population of CO2 molecules in an interstellar cloud.  One can 
measure the population of molecules in the first excited state ( 2n = ) relative to the ground state 
( 1n = ) for each normal mode.  (One does this by examining the absorption of light at different 
wavelengths).  Call this population ratio r .  Suppose we find that r for mode 1 is 0.1, and r for 
mode 2 is 0.0001.  REVISED VERSION:  Suppose we find that the ratio of the r  values for the 
two modes is 1 2/ 5.8mode moderr = .  From this information, determine the temperature of the cloud, 

in Kelvin.  (Boltzmann’s constant 231.38 10Bk −= ×  Joules/K.) 
 



(3, 4 pts.)  The Partition Function.  Consider a system with Q possible states.   
(a, 2 pts.)  Show that in the high temperature limit (τ→∞), each state is equally probable; show also 
that the partition function Z→Q. 
(b, 2 pts.)  Show that in the zero temperature limit (τ→0), the probability for finding the system in 
any state but the ground (lowest energy) state goes to zero; show also that the partition function 
Z→1. 
 
 
 
(4, 7 pts.)  A four-bead polymer chain.  A polymer molecule is a chain of 
repeating molecular units. (Rubber is one of many common examples.)  
Typically the chain is very long, thousands or millions of “monomer” units, 
but we’ll consider a four-bead polymer chain1 on a 2D grid.  (See the figure, 
which shows two possible microstates of the system.)  Each bead has to sit at a 
grid site, and two beads can’t occupy the same site.  The chain can bend at 90° 
angles at each site.  Imagine that the monomers at each of the two endpoints 
of our chain are special – they repel one another in such a way as to give the 

polymer an energy 2E d
ε= , where d  is the distance between endpoints in 

grid units.  (For the two configurations shown, 1d =  and 5d = .)  Note that 
the highest energy state has 1d = . 
(a, 2 pts.)  Draw all the microstates of the system – i.e. all possible configurations – and calculate 

their energy.  (Don’t count rotations of the entire polymer as distinct states – think about why.) 
(b, 1 pt.)  Tabulate the degeneracy of the “macrostate” with end-to-end distance d , for all distinct 

d values. 
(c, 3 pts.)  Calculate the mean end-to-end separation, d  as a function of temperature. 

(d 1 pt.)  Plot d as a function of τ/ε. 
 

 
 
(5, 6 pts.)  Paramagnetism and the Curie Law.  Consider, as in class, N spins each of which can 
point either up or down along some axis, e.g. an axis defined by an applied magnetic field B.  Each 
spin has a “magnetic moment” m and therefore an energy due to the magnetic field of E1 = ±mB 
(positive if the spin is parallel to the field and negative if antiparallel).  The total energy of the system 
is therefore E mBs= − , where s  is the spin excess defined in class, i.e. the number of up spins minus 
the number of down spins. 

                                                 
1 States of four- and six-bead chains are also discussed in the Dill and Bromberg text, on reserve. 



 The fractional magnetization, M, of our system of spins is defined by: sM N= , where 

s  is the mean (expectation) value of s .  Note that if 1M = , s N= , i.e. all the spins point in the 
same direction. 
 Using the expression derived in class (or the text2) for the entropy of a spin system for 
s N , find the equilibrium value of M as a function of m, B, and the temperature τ.  You 

should find that 1/M τ∝  – i.e. the magnetization drops inversely with temperature – known as the 

Curie Law of paramagnetism.  Hint:  Show that for s N , 
2

2 20( ) 2
EE B Nmσ σ −= . 

 
 
(6, 7 pts.)  Calibrating an optical trap.  We often wish to apply and measure forces.  As we saw 
innumerable times last term, “any” force ( F ) that restores an object to equilibrium is roughly 
spring-like:  force and displacement from equilibrium ( x ) are related by F kx= − , from which it 

follows via the general relation dUF
dx

= −  that 21
2

U kx= .  The symbol k  denotes the spring 

constant of the spring.    Macroscopically, we can apply and measure forces with springs or other 
“familiar” tools.  How can we deal with forces at microscopic scales – for example, manipulating a 
cloud of atoms, or measuring the force exerted by a protein motor? 
 As I’ve mentioned in class, optical 
traps provide a powerful tool for 
microscopic manipulation.  A laser focused 
to a point attracts objects to the center of 
the focus – the light itself is an intangible 
“spring.”  Before we can use this spring to 
measure forces, we need to know its spring 
constant.  How do we measure k ?  
Statistical mechanics! 
 

 
 In this problem I’ll present real experimental data, from the Parthasarathy Lab, from 
which your task is to determine k .  The setup consists of a microsphere (a 3-μm diameter glass 
bead) trapped in an optical trap.  Taking movies and performing various image analysis algorithms, 
we determine the location of the particle center at each “frame” of our movie.  The x-coordinate of 
these positions looks like: 

 
                                                 
2 The textbook defines the spin excess as 2s, rather than s.  This problem, by the way, is the same as K&K 
#2.2. 



 I’ll do one step of the analysis for you:  From the above “ x ” values, we can determine the 
probability distribution ( )p x  by sorting the data into “bins” of some convenient size.  p  for each 
bin is given by the number of data points in each bin, normalized so that 1ip∑ = .  (This is very 
easy to do, but I’m doing it for you just so you don’t have to write a computer program to sort the 
data yourself.)  Here’s the result: 

x , μm ( )p x  

0.00000  0.00893 
0.00448  0.00595 
0.00896  0.03274 
0.01344  0.10417 
0.01792  0.27679 
0.02239  0.30952 
0.02687  0.16964 
0.03135  0.06548 
0.03583  0.02381 
0.04031  0.00298 

 
(a, 1 pt.) The position data is measured with respect to some arbitrary point – i.e. 0x =  is not the 
equilibrium position.  What is?  (i.e. what is x ?) 
(b, 6 pts.)  Using the data in the above table, and the Boltzmann distribution, determine the spring 
constant of the trap.  Express your k  in units of Newtons/meter.  I am intentionally not telling 
“spelling this out” for you – you know all the necessary physics, and your task is to figure out how 
to implement it! 
 Some hints and comments: 

• Boltzmann’s constant 231.38 10Bk −= ×  Joules/K.   The temperature during the experiment 

was about 23°C (296 K).  One micron (μm) is 610− m. 
• Graph things!  For example, you may wish to graph ( )p x  vs. x . 
• What would you expect ( )p x  for a spring-like energy function to look like? 
• Hopefully, you realize from the above question that ( )p x  is not a linear function of anything 

useful.  When analyzing data, it is often useful to change scales, especially so that linear 
relations emerge.  What would you expect ( )ln ( )p x  vs. x  to look like?  Is this any “better?” 

• Be careful with units. 
 
[Comment added in email:    Graphing -- and deducing what to graph -- are the keys to this problem, which is a 
very "real world" exercise.  If you think about how to graph the data, the answer can emerge as a simple property of 
the graph.  For example, if I plot the distance I bicycle as a function of the time I spend on the bike, my (average) 
speed emerges as the slope of that line.  If I plot the log of the distance vs. the square root of the time, nothing insightful 
emerges.] 


