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Problem Set 7: SOLUTIONS 

 
(1)  An electrostatic potential.   
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The difference in energy in outE E qV− = , where 0.1V =  Volts is the voltage, from 

elementary electrostatics.  Bk Tτ = , where 231.38 10Bk −= ×  J/K and T =310K = body 

temperature.  Therefore: 
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is almost correct.  Why? 

 
 
 
(2)  The CO2 molecule, revisited.   

For a particular mode “m”, 
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[INITIAL VERSION OF THE PROBLEM]  Unfortunately, as written, this expression can be evaluated for 
each of the normal modes separately, giving two different temperatures.  This isn’t 



physically realistic, and it’s my fault for mis-writing the problem.  If you solved the problem 
this way, you won’t be penalized for it.  You would have found:  1 834τ =  K and 

2 367τ = K. 
[REVISED VERSION OF THE PROBLEM]  The ratio of the r values of the two modes is 
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(3, 4 pts.)  The Partition Function.   
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Let’s call the ground state energy 0E ; we can factor this out, if we want: 
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(a)  In the high temperature limit (τ→∞), the probability of any state i  is 
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we can state Z Q→ .  Either answer is fine. 
 

(b)  In the zero temperature limit, let’s think about 
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(4)  A four-bead polymer chain. 
(a)  Unintentionally, there are two valid interpretations of this problem.  We can say that there are 

four distinct states – (1) through (4) below.  Or we can say that there are six distinct states 
(1) through (6) below.  States (2) and (5) are equivalent under a rotation into the third 
dimension, and so I had intended that they not be considered as distinct.  However, as 
written the problem implies that our 2D polymer should really stay in two dimensions, and 
so we can’t rotate from (2) to (5).  (The same logic holds for (3) and (6).  But note that no 
“mirror image” of (4) is different from (4), in any interpretation.)  These two interpretations 
will lead to different answers – which highlights the importance in real life of knowing what 
symmetries apply to systems of interest.  Due to the ambiguity of the problem, either 
interpretation will be considered correct.  Congratulations to those of you who noticed 
this! 



 
The energies 2E d
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state d E 
1 3 

9
ε  

2 5  5
ε  

3 5  5
ε  

4 1 ε  
5 5  5

ε  

6 5  5
ε  

 
 
(b)  If we don’t consider (5) and (6) 

d degeneracy 
1 1 

5  2 

3 1 
  If we do consider (5) and (6) 

d degeneracy 
1 1 

5  4 

3 1 



 
(c) 

 
 
 
 
(5)  Paramagnetism and the Curie Law.  
We have showed that for non-interacting binary spins, with s N , the entropy 
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(6)  Calibrating an optical trap.   
 

(a)  i i
i
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0.0212 mx μ= .  This is the location of the trap center. 
 
(b)  
It might first occur to us to plot ( )p x  vs x : 

 
Figure 6.1.  p(x) vs. x 

 It’s not immediately obvious where this gets us!  So let’s think:  What do we expect ( )p x  for 
a spring-like energy function to look like?  DON’T FORGET THAT “X” IN HOOKE’S LAW 
REFERS TO DISPLACEMENT FROM THE EQUILIBRIUM POSITIONS!  From the 
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function centered at the equilibrium position.  We could try fitting the above plot to a Gaussian, but 
let’s try to think more: 
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The data points fit the expected linear relation very well.  (One point doesn’t fit, but no one ever 
said real life was pretty.  Incidentally, which data points would you ‘expect’ based on Figure 6.1 and 
the graph in the assignment to be the least reliable?)  In the “plotted” units, we can read the slope 

“by eye” as about 16,000 1/μm2.  Therefore 2
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optical “spring.” 
 
 This is how we, and others, determine the stiffness of optical traps.  Note that we don’t have 
to know anything about optics or the mechanism by which light and matter interact – the 
Boltzmann relation spares us all this.  The only thing that we need to know to determine 
probabilities is the energy! 


