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Problem Set 8: SOLUTIONS 

 
(1, 3 pts.)  Thermal energy scales.   
(a)  Atoms are stable when, roughly, 1Bk T eV< .  1 eV = 19101.6 J−× , so 

( )19 231.6 /1.3810 10T K− −× ×=  = T = 11000 Kelvin. 

(b)  At T = TC, thermal energy approx. equals the coupling:  B Ck T = Coupling, so Coupling, in eV = 
23 1910 630 /1.6 11.38 0/B C eTk − −×= × ×  eV = 0.054 eV. 

(c)   

 
 
 



 
 
 



(3, 6 pts.)  A 1-particle gas.   

 

 



(c)  Note from your answer to Problem 2 that 3
1

Qn λ≈ , where λ  is the particle wavelength.  

Therefore when the concentration Qn≈ , the mean spacing between particles is similar to their 
quantum-mechanical wavelength. 
 

 
 
(5, 4 pts.)  A relativistic gas.   

 
 
 



(6)  Zipper Problem 
 A general comment:   This problem illustrates how the partition function and Boltzmann 
relation provide information about physical systems.  Note, either from your own solutions or those 
below, that there’s no need to determine an explicit function for the entropy, or its relation to 
energy!  That's the great thing about the partition function and the Boltzmann distribution -- they 
“contain” this information and provide an alternate, and generally simpler, way of extracting 
information about the system.  All we need to do to be able to exploit them is to be able to 
enumerate the states of the system and the states’ energies – drawing them can be a good place to 
start! 

A good way to start this problem is to think of a few microstates of the zipper and draw 
them.  You’ll find that you can easily enumerate all the states – there’s a state with zero links open, 
with energy 0; a state with 1 link open with energy 1ε; a state with 2 links open with energy 2ε; a 
state with 3 links open with energy 3ε; up to a state with N links open with energy Nε.  There is no 
need to try to tabulate numbers of accessible states and get at the entropy – you’re not asked to, and 
more importantly this information is “contained” in the partition function, which is much easier (in 
general) to calculate.  So calculate the partition function: 
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number of open links, s , is a great label:  
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(b) We want to calculate s , the average number of open states. 

 Fundamentally, ( )1 exp
i s

is sp s
Z

sβε∑ ∑= = − . 

 We are interested in s  at low temperature.  Many people took the 0τ →  limit, for which 

one can show quite easily that 0s = .  I won’t take off points for this, but this isn’t what I wanted.  
There’s a difference between low temperature and zero temperature. 
 What I was really going for was: 
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At low temperature, βε>>1; let’s delete all the terms that contain higher powers of 
βε−e than the first power.  The denominator of the prefactor just becomes 1; the first term of the 

sum is zero anyway, so we only keep the s = 1 term.  This gives us: 

( ) βεβε −−−>≈< ees 1 .  As we can see by plotting it, this low temperature 
approximation is pretty good.   
 



 


