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Physics 352:  Problem Set 9 
 
 
Due date:  Wednesday, Mar. 12, 5pm.  In order to promptly post the solutions, no late homework 
will be accepted. 
 
 
(1, 2 pts.)  Osmotic Pressure.  In class we derived the equation of state for an ideal gas by 
considering the “non-degenerate,” “classical” limit of quantum-mechanical particles-in-a-box1.  We 
found that BPV TNk= , where all the symbols have their usual meaning.  This equation applies to 
any dilute, non-interacting, non-relativistic particles, including molecules in solution (e.g. a dilute 
solution of salt in water.)  /N V  is the concentration of solute, n , so the osmotic pressure 

BP Tnk= .  A typical solute concentration in your cells is 0.15 M, where 1 M is 1 mole per liter.  (1 

mole is 236.02 10×  particles.)  Suppose one injects pure water into someone’s blood vessels, so a red 
blood cell with 0.15 M solute inside is surrounded by plain water.  What is the osmotic pressure 
difference between the inside and the outside of the cell?  Express your answer in units of 
atmospheres (1 atm = 101,000 Pa).  The blood cell membranes, by the way, can’t withstand this; 
they will rupture and the resulting mess can clog the blood vessel.  People have died in hospitals by 
having water mistakenly injected into them. 
 
 
(2, 7 pts.)  A 2-state system, revisited.  Consider a two-state system, in which one state has energy 

0 and the other has energy ε . 
(a, 2 pts.)  Calculate the Helmholtz free energy, F , as a function of temperature and ε .  There 

are various ways to figure out F  – think of one, based on what we’ve done in class, that doesn’t 
require doing part (b) first. 

(b, 3 pts.)  Calculate the entropy of the two state system.  There are several ways to do this.  I find 
that it’s not at all apparent how to write the “number of available states” at various temperatures 
– instead, take the seemingly less direct path of relating σ  to other parameters. 

(c, 1 pt.)  As / 0ε τ → , and /ε τ →∞ , what values would you expect σ  to approach?  (This 
doesn’t involve calculations.) 

(d, 1 pt.)  Calculate σ  in the limits / 0ε τ →  and /ε τ →∞  -- which hopefully agrees with your 
answers to (c). 

 

                                                 
1 We could have taken a purely classical approach, but this would get us into trouble when considering 
interesting quantum systems later in the course. 



(3, 5 pts.)  Relating F  and Z .  We showed in class that the Helmholtz Free Energy, F , is in 

general related to the partition function, Z , and temperature, τ , by ln( )F Z Bτ = + , where B  is a 

constant of integration.  Show that 0B = , and therefore ln( )F Zτ= . 
 To do this:  (i) Note that as 0τ → , the entropy 0lnσ → Ω , where 0Ω  is the degeneracy of 
the ground state.  (ii) Calculate 0τσ →  using an expression we derived that relates entropy and 

derivatives of F , using ln( )F Z Bτ = + .  (Note from an earlier problem set what must happen to 

Z  as 0τ → .)  The two σ ’s must agree, from which you’ll be able to show that B  must be zero. 
 
 
(4, 7 pts.)  A one-dimensional gas.  In class we examined a three-dimensional ideal gas.  Consider 
here an ideal gas of N non-relativistic particles of mass m  confined to a one-dimensional box of 
size L.  (One can find one-dimensional systems in, for example, carbon nanotubes – materials we 
saw earlier.)  Derive expressions for  

(a, 5 pts.)  The energy U as a function of N  and τ , and 

(b, 2 pts.)  The heat capacity at constant volume (
V
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∂
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You can use either the “entropy-based” or “partition-function-based” approaches we used in class. 
 
 
(5, 11 pts.)  A one-dimensional polymer.2  As discussed 
earlier, polymers are long, chain-like molecules.  (Rubber is 
an everyday example.)  As a crude model of a polymer 
molecule, consider a chain of N  links, each of length ,  
with each link able to point only either left or right – a 
“one-dimensional” polymer.  The end-to-end distance is 
L .  RN  links point to the right, and LN  to the left.  (See 
figure.) 
For parts a and b, you may wish to consult the handout or 
your lecture notes on Brownian Motion. 
(a, 1 pt.)  Treating the polymer as a 1D random walk, 
where each link takes a random “step” left or right, how 
would you expect L  to scale with N ?  (In other words, if 

pL N∝ , what is p ?) 

 
A “1D” POLYMER, DRAWN SLIGHTLY 
EXTENDING INTO TWO-DIMENSIONS.  
FOR THE SYSTEM CONFIGURATION 

SHOWN, N = 16, L = 2 , AND NR=9 
LINKS POINT TO THE RIGHT.  

(b, 1 pt.)  Show that for large N, L N .  (We’ll consider large N  in this problem.) 
(c, 3 pts.)  Write an expression for the entropy of the system as a function of N and L.  (Hint: You 

should realize that this system is eerily similar to the binary spin system whose entropy we 
already considered in great detail.  Map this system onto that.  Express L in terms of N and NR.) 

                                                 
2 Much of this problem is based on Problem 3.34 in “Thermal Physics,” by David Schroeder (2000). 



(d, 2 pts.)  For a one-dimensional system, L plays the role the volume (V) plays in 3D.  Similarly, 
the tension force f  replaces the pressure (P).  (Note that P dV has the same dimensions as 
f dL .)  Taking f  to be positive when the rubber band pulls inward, write and explain the 

appropriate thermodynamic identity, i.e. the relation between dU, τσ, and mechanical work, for 
the system. 

(e, 3 pts.)  Using the thermodynamic identity, express f  in terms of a partial derivative of the 
entropy.  From this, determine f in terms of L, , and τ.  You should find that the tension 
force is linearly proportional to the extension, L  – i.e. the polymer obeys Hooke’s Law.  This is 
quite remarkable: In our model there is no energetic difference between different conformations.  
Solely due to entropy, rather than any “restoring force” from molecular bonds, the polymer 
behaves as a spring! 

(f, 1 pt.)  Discuss the force dependence of the tension force on the temperature (at fixed L, for 
example).  If you increase the temperature of a rubber band, should it expand or contract? 

 
 
(6, 2 pts.) Diffusion.  We showed in class that for a one-dimensional random walk, the mean-
squared distance traveled, 2x , is proportional to the travel time: Dtx 22 = , where D is the 

diffusion coefficient.  Show that for a particle moving in two-dimensions, Dtr 42 = , where 

22 yxr += .  (Hint: For a random walk, are the motions in the x  and y  directions related to one 
another?) 
 
 
(7, 2 pts.)  Hypersphere volumes.  The concept of a sphere in three-dimensional Euclidean space 

can be generalized to that of a “hypersphere” in n-dimensional Euclidean space.  (For example, 
an n=2 hypersphere is a disk.)  The volume of a hypersphere of radius R in n-dimensional 

Euclidean space is:   n
n
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  , where Γ(x) is the gamma function (see Problem Set 6). 

(a, 2 pts.)  Verify that the boxed equation gives the expected volume expressions for 2n =  and 
3n = .  You may use the results of Problem 1 of Problem Set 6. 

(b, 0 pts.)  Prove the boxed equation.   [Note: This problem is quite difficult.  I’m assigning it zero points 
because I don’t want it to distract you from the more “essential” problems in the assignment.  If you’re 
mathematically inclined, you may enjoy the challenge of proving it, and I’d be happy to look at your solution.  If 
you skip this problem, I won’t mind at all -- really.  There’s more than one way to prove this relation, by the 
way.] 


