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Problem Set 9: SOLUTIONS 

 
 
(1)  Osmotic Pressure.  BPV TNk= , i.e. BP Tnk= .  The simplest treatment is, as indicated, to 
think of the solute as an ideal gas.  (A more thorough approach is to worry about the solvent 
concentration as well, but this isn’t necessary if the density of solute is much smaller than the density 
of solvent.  You can verify that this is indeed the case for the situation described.)  The 
concentration 0.15n = M= 236.00. 5 21 10× ×  particles per liter = 23 36.02 100 10.15× × ×  particles 
per m3.  (I remember the conversion from liters to cubic meters by recalling that 1 cm3 = 1ml.)  The 
corresponding pressure is 23 3 236.02 10 10 310 1.38 100.15Bk TP n −= × × × × × ×= , so 

386000 3.8P Pa atm= = . 
 
 
 
(2)  A 2-state system, revisited.  Two states, with energies 0 and ε .  
(a) Helmholtz Free Energy F U τσ≡ − .  What is σ ?  I don’t know.  Given the energy levels, it’s 

easy to calculate the partition function:  /0exp exp exp 1 .
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We’ve proven that ln( )ZF τ= − , so ( )/1n .lF e ε ττ −= − +  

 
(c)  As / 0ε τ →  (i.e. high temperature) we would expect both states to be populated – so there are 

two states available, and hence entropy ln 2σ → . 
As /ε τ →∞ , (i.e. low temperature) we would expect only the low energy state to be populated, and 

hence entropy ln1 0σ → = . 
Note that it is not correct to state that since there are two states, the entropy is always ln 2 .  

Entropy is the logarithm of the number of accessible states, and accessibility depends on τ  



(d)  As / 0ε τ → , 
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→  and 1 exp( 2/ )ε τ+ − →  , so ln 2σ → , as expected 

from (c). 

As /ε τ →∞ , 
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, but the denominator goes to infinity faster.  

1 exp( 1/ )ε τ+ − → , so ln1 0σ → = , as expected from (c). 
 
 
(3)  Relating F  and Z . 

 
 



(4, 7 pts.)  A one-dimensional gas. 

 

(b)  The heat capacity at constant volume 1
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(5)  A one-dimensional polymer.   
(a)  A 1D random walk.  We showed that 2x N∝ , where N is the number of steps.  Here, each 

link is a step, and the length L  is like x .  Therefore 2L N∝ , or 1/2L N∝ .  So 1/ 2p = . 

(b)  1/2L N∝ .  Incorporating our step size, 1/2L N∝ .  
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so L N . 
(c)  The polymer (or random walk) looks just like the binary spins with the following mapping: 

polymer ↔ binary spins 
number of links N   number of spins N   

right rightN N− = /L   spin excess s = up downNN −  



(think about this:  right leftL N N−= )

 For the binary spins, the entropy 
2

ln 2 2
sN Nσ = −  (for large N).  So the polymer entropy 

is 
2

2ln 2 2
LN Nσ = − . 

(d)  The thermodynamic identity dQ dU dW= + , where dW  is the work done by the system.  If 
the force is defined to be positive when the polymer is pulling inwards, dW fdL= − , so increasing 
length is positive work.  Therefore d dU fdLτ σ = − . 

(e)  From the above expression, Uf
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.  The first term 0U
L

∂
=

∂
 -- we haven’t introduced 

any length dependence of the internal energy.  Therefore the force f
L
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.  Using our entropy 

expression, 2f L
N
τ

= .  A linear restoring force! 

(f)  At fixed L , the force increases linearly with temperature.  Therefore, if we increase τ  the force 
increases (i.e. pulls inward – see (d)) and the polymer contracts. 
 
 
 
(6.) Diffusion.  We showed in class that for a one-dimensional random walk, the mean-squared 
distance traveled, 2x , is proportional to the travel time: Dtx 22 = .  In two dimensions, if the 

walk is random, its components in the x- and y-directions are random and unrelated.  (If they 
weren’t, it wouldn’t be a random walk!)  Therefore 2 2y Dt=  also.  The mean-squared distance 

from the origin is 2 2 2 4r x y Dt= + = . 

 
 
(7)  Hypersphere volumes.  
 
See the following pages. 


