Sedimentary Basins and Plate Tectonics: Overview

B. Dorsey, UO Dept. of Geological Sciences

Sedimentary basins are areas of crustal subsidence where sediments accumulate by deposition in environments such as rivers, lakes,
alluvial plains, coastal areas, deltas, continental shelves, and deep oceans. Whenever we see a thick (> ~100 meters) succession of
sedimentary rocks in outcrop or in the subsurface, the basin analyst will ask: why did this pile of sediment accumulate here, how fast
did the basin subside through time, where did the sediment come from, what types of environments and climate existed here during
deposition, and what were the driving structural, tectonic and geophysical forces that created the basin? Through integrative analysis
that includes stratigraphy, sedimentology, paleocurrents, structure, regional tectonics, and physical modeling, we often are able to
answer these questions and thereby gain a good understanding of the geologic, climatic, and tectonic evolution of a region.

We can understand how basins form by considering different tectonic settings, the main geologic processes active in those regions,
and the related physical mechanisms that cause subsidence. The following table provides a summary of the main processes that
create sedimentary basins, provided in the context of common tectonic settings found on Earth today and in the past.

dom/'n qrfr
Plate-Tectonic_Setting Geologic Process Subsidence Mechanisms Basin Name
* Continental Rift Zones Extension, Crustal Thinning Isostatic Subsidence Rift Basin
* Passive Continental Margins Lithospheric Cooling Thermal Subsidence Miogeocline
« Convergent Margins:
- Orogenic Fold-Thrust Belts, Crustal Thickening, Loading Flexural Subsidence Foreland Basin

Continental Collision Zones Forearc Basin:

- Subduction Zones, Volc. Arcs Lithosph. Cooling +/- Loading  Thermal +/- Flexural Subs. Trench, Trench-
Slope Basins

Strike-Slip Fault Zones

Transtensional Oblique Extension Isostatic Subsidence Pull-Apart Basin
Transpressional Oblique Contraction Flexural Subsidence Foreland-type
* Stable Plate Interiors Slow Cooling Slow Thermal Subsidence Intracratonic Basin

Note: Smaller basins also exist: they tend to form by local deformation and deflection of the Earth’s surface by growth of active
structures such as faults and folds. Such basins are commonly found within the active settings described above, and are relatively
small features produced by local deformation rather than the large-scale geodynamic processes listed above.
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A two-step proposal for the formation of the Basin and Range Province. A. Nearly
borizontal subduction of an oceanic Dplate produced compressional stresses which
generally thickened the crust in the Basin and Range. B. Sinking of this oceanic slab
allowed for the upwelling of magma from the astbeno-sphere. The buoyancy of the
magma caused upwarping and tensional JSracturing in the crust above. This event
was associated with volcanism and east-west extension of the crust by nearly 150

kilometers.
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FiG. 3. Isometric diagram showing the main sedimentological features of facies model A: continental basin
with interior drainage. Full discussion in text. Note: only the major basin-margin fault is shown; in natural
examples the presence of antithetic, synthetic and transfer fault systems strongly modifv certain depositional
reactions to tilting. In addition, the sub-surface geometry is modified by differential compaction, thinning of
the hanging wall associated with development of the roll-over and the presence of antithetic/synthetic fault
systems within the sedimentary cover. 1, 2, 3 etc. indicate successive fan lobes.



T-53 Rising Magma Upwarps the Crust; a Rift Zone
Forms; a Narrow Sea Forms; an Expansive Ocean Basin
and Ridge System is Created
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mantle lithosphere fails by ductile
necking. The formation of a
sediment-filled graben causes
isostatic disequilibrium and the
compensating rise of the
aesthenosphere; this leads to
regional uplift. Partial melting of
mantle promotes surface volcanism
and an upward transfer of heat,
The uplifted rift shoulders become
croded and the rift continues to fill
with sediment. Eventually, as
crustal extension continucs, occanic
crust is created and the continent
starts to cool as extension is
transferred 1o the oceanic realm
and a passive margin devcelops.

25km Rift Basin (50 km extension) Post-rift sediments drape the
[ ErOdec_i__ syn-rift fill and spread onto the
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~/! N

ity \\‘ -;\,\

} e \,\ \/\ l\ S
%S ..., Vo~
TS \/T\‘\‘ ‘s -’
DNl

1007
50 km Rift Basin (100 km extension)
l Oceanic crust Post-ri sediments e 0

Malure Continental Margin

Pre-rift Rift Post-rilt sedimenls Oceanic Crust 0
) - —-'-
5125
b 50
-75
-100 km
L_ J
100 km

Allen + Alen (1890)



ALB. - APT. SALT LATE JURASSIC-
UNCONF.  piapiR GROWTH EARLY CRETACEQUS
\ \ FAULTS | SHELF EDGE

DEPTH IN KILOMETERS

MOHO BASED ON GRAVITY
MODEL FOR USGS LINE 6

VIOLCANIC INTRUSION

VE = 8X ! i | 1 1 i
0 100 200 300
KILOMETERS
0 50 100 150 200
{ N . Lo 0 | L
MILES

Figure 19.7

Interpretative stratigraphic section across the Atlantic continental margin of North
America in the vicinity of Baltimore Canyon trough. Based on geophysical data and drill-
hole information. [After Grow, J. A., 1981, Structure of the Atlantic margin of the United
States, in Geology of passive continental margins: Am. Assoc. Petroleum Geologists Ed.
Course Note Ser. No. 19, Fig. 13, p. 3-20, reprinted by permission of AAPG, Tulsa, OK.]
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Stratigraphy of the US Atlantic continental margin: A. B. Watts and J. Thorne
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Fig.7 The complbte mods! for the stratigraphy of the US Atlantic continental margin based on the input parameters listed in Tables 1
and 2. The model incorporates 2-layer stretching (Fig. 3b), flexure, variable compaction (Fig. 6), sea level changes (Fig. 4, curve labelled
‘+), and slow erosion. The assumed age of rifting Is 186 Ma. (Lower Jurassic/Middle Jurassic). The 144 Ma. {Jurassic/Cretaceous), 98
Ma. (Early Cretaceous/Late Cretaceous), 65 Ma. (Palaeocene/Late Cretaceous), 55 Ma. (Eocene/Palaeocene, 38 Ma. (Ofigocene/Eocene),
26 Ma. (Oligocene/Miocene and § Ma. (Pliocene/Miocene) stratigraphic horizons are shown by solid lines. Two prominent
unconformities characterize the stratigraphy: one at the Palaeocene/Late Cretaceous boundary where > 10 m.y. is missing and another
at the Miocene/Eocene boundary where > 13 m.y. is missing. The numbers below the complete model indicate the crustal (upper
value) and lithospheric (lower value) stretching factors that were assumed in the model
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Schematic representation of basin structure in the trench-fore arc zone of a subduction
setting. [After Dickinson, W. R., 1995, Forearc basins, in Busby, C. J. and R. V. Ingersoll

(eds.), Tectonics of sedimentary basins: Blackwell Science, Cambridge, MA, Fig. 6.1,
p. 221. Reproduced by permission.)
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North America in the Early Mesozoic Era

Accretionary Forcare Continental  Tgneous
wedge hasin shelt are
Franciscan Great Valley Great Valley
mdélange ophialite turbidites

B
ﬁgure 16-31 The Pacific margin of northern California in in California, where they have been tilted to a high angle |
Jurassic time. The Franciscan mélange formed an accretion- tectonic activity. The accretion of the Franciscan and Grea:
ary wedge along the marginal subduction zone (see Figure Valley terranes to the continental margin during Late Jurac
8-23). The Great Valley ophiolite was a zone of seafloor sic and Cretaceous time extended North America westwa
that was squeezed up along the eastern margin of the accre- (Figure 16-28). Today the Great Valley sequence still occu
tionary wedge, and the Great Valley sequence formed in pies a low region, the Central Valley of California. West of
Late Jurassic time as turbidites on deep-sea fans and in ad- the Central Valley, portions of the Franciscan meélange have
jacent environments. The photograph shows turbidites that been elevated as part of the Coast Ranges. (A. Adapted fro

now lie along the western margin of the Sacramento Valley R. K. Suchecki, Jour. Sedim. Petrol. 54:170-191, 1984.)
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Fic. 9.—Major fault zones in the Death Valley area. Califomia (modified from Stewart, 1983: see Fig. | for locstion), showing the interpretations
of A) Hill and Troxel (1966). and B) Burchfiel and Stewant (1966). Shading (A) indicates outcrops of Proterozoic to Terniary sedimentary and
voleanic rocks: unshaded area represents Quatemary allavial deposits. Evideace for strike slip along the northern Death Valley-Fumece Creek and
southem Death Valley fault zones includes en echelon folds in Cenozoic rocks and an offset volcanic cone, together with regional stratigraphic
arguments.

A) A buried strike-slip fault is inferred in the central north-trending segment of Death Valley on the basis of oblique striae on faukt swrfaces in
the Black Mountains. and of “en echelon™ anticlines in basement rocks (Hil) and Troxel, 1966). The insent compares the orientations of observed
structures with an idealized suain ellipse for the overall deformation; right slip inferred parallel to direction C is incompatible with orientations
summarized in Figure §.

B) Death Valley interpreted as a pull-apan along an oblique segment of a strike-slip fault system (Burchfiel and Stewast, 1966). Indicstors of
crustal stress and regional seismicity indicate continued exiension in an spproximately northwest-southeast direction paraliel with the Fumace Creek
and southern Death Valley fault zones (Sbar, 1982). See text for further explanation,
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Figure 7. Faults and topography of the northern Gulf of California and Salton Trough region. Decorated
thicker blue lines are detachment faults, tick marks on upper plate; red lines are high-angle normal and
strike-slip faults. ABF, Agua Blanca fault; BSZ, Brawley Spreading zone; CDD, Canada David
detachment; CPF, Cerro Prieto fault; E, Ensenada; IF, Imperal fault; SAFZ, San Andreas fault zone; SD,
San Diego; SGP, San Gorgonio Pass; SF, San Felipe; SJFZ, SanJacinto fault zone; SSPMF, Sierra San
Pedro Martir fault; T, Tijuana; WB, Wagner basin. Shaded-rdief map base courtesy of H. Magistrale.
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Fic. 6.—Examples of nucleating pull-apant basins along active strike-slip faults. 4, Regional setting of
pull-aparnts in Saiton Trough. California. from Crowell (1981); abbreviations are: SAFZ San Andreas Fault
Zone; SJFZ San Jacinto Fault-Zome; CFZ Calipatria Fault .Zone; V recent volcanic dome; dots indicate
areas of Quaternary ‘basin fill; black triangles are peaks-about 3 km in elevation in the western par of the
Transverse Ranges restraining fault bead; box indicates Salion Trough map area shown in figure 68, 5. !
Fault map and earthquake focal mechanism solutions of Mesquite Basin between Brawley (BFZ) and ;
Imperial (IFZ) Fault Zones from Johnson and Hadley (1976). Scarps are shown by solid lines; buried fauilts '
inferred from seismicity are dashed. C. Fault and sediment map of Clonard Basin, Haiti. based on photoin-
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A) Cross section of southern Califomia from La Jola to the Chocolate Mountains (from Fuis et al.. 1984, see Fig. | for location). The observed
-gravity anomaly is compared with the anomaly calculated from the model (Jensities in gm/cm'). Solid boundaries are those conlmlled by seismic
sefraction data: dashed lines indicate boundaries adjusted to fit the gravity data. Sub-basement (lined area, density 3.1 gm/cm’) beneath the Salton
Trough provides most of the gravitational compensation for scdimentary rocks (densities 2.3 and 2.55 gm/cm’) and inferred metasedimentary rocks
(density 2.65 gm/cm'). The San Andreas and Imperial faults are located near the cast .and west edges of the block with density of 2.65 gm/cm’,




ASYMMETRIC SPREADING IN THE SALTON TROUGH:
Near-surface detachment slip accommodated by accretion at depth?

Mechanical
Extension

Accretion

Figure 8. Conceptual model for Plio-Pleistocene regional strain partitioning of the southern San Andreas
fault (SAF) and west Salton detachment fault system (WSDF; Axen and Fletcher, 1998; Axen, 2000).
Crustal accretion takes place in the Brawley seismic zone where continental crust has been completely
attenuated by oblique rifting (Fuis et al., 1984). The space created by lithospheric rupture is filled with
upper-mantle basaltic intrusions from below and voluminous sediment accumulation from above. This
diagram depicts "ideal" partitioning of regional strain into strike-slip on the San Andreas fault and dip-slip
extension on the west Salton detachment fault. Ongoing work for this project (Axen, Janecke, Dorsey,
and Housen) suggests a more complicated strain field in which a significant share of strike-slip occurred
on the detachment fault system, possibly in the later stages of fault slip and related basin evolution.
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FiG. 15.—~A comparison of strike-slip basins in profile, i
A} The Deud Sca Rift. bounded by faults with nommal separation (from Zak and Freund, 198); see Fig. 1B for location),
B) The Venturs Basin. Culifornia. bounded by faults with reverse sepuration (from Yeuts, 1983; sce Fig. | for location).
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