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THESIS ABSTRACT 
 
James Carlton McNabb 
 
Master of Science 
 
Department of Geological Sciences 
 
December 2013 
 
Title: Stratigraphic Record of Pliocene-Pleistocene Basin Evolution and Deformation 

Along the San Andreas Fault, Mecca Hills, California 
 
 

Sedimentary rocks in the Mecca Hills record a 3-4 Myr history of basin evolution 

and deformation within the southern San Andreas fault (SAF) zone. Detailed geologic 

mapping, measured sections, lithofacies analysis, and preliminary paleomagnetic data 

indicate that sedimentation and deformation in the Mecca Hills resulted from evolution of 

local fault zone complexities superimposed on regional subsidence and uplift. Sediment 

was derived from sources northeast of the SAF and transported southeast along the fault 

zone in large rivers, alluvial fans, and a smaller fault-bounded lake. Inversion of the 

Painted Canyon fault from oblique SW-side down to SW-side up slip was the main 

control on local deposition and deformation. Regional controls are suggested by an 

angular unconformity observed in the Mecca and Indio Hills along ~50 km of the SAF, 

and synchronous post-740 ka uplift northeast of the SAF along ~80 km of the fault zone.   

 This thesis includes the “Geologic Map of the Central Mecca Hills, Southern 

California” as supplemental material. 
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CHAPTER I 

INTRODUCTION 

 

Subsidence and uplift of sedimentary basins is widely observed along continental 

transform faults (e.g., Crowell, 1974; Christie-Blick and Biddle, 1985; Weldon et al., 

1993; Sadler et al., 1993; Aksu et al., 2000; Seeber et al., 2006, 2010), yet the controls on 

the evolution of these basins through time remain incompletely understood. Models that 

predict transpression and transtension due to relative plate-motion obliquity along strike-

slip faults have failed to describe observed patterns of uplift and subsidence along the San 

Andreas Fault (SAF) (e.g., Spotila et al., 2007a, b), suggesting the influence of additional 

factors such as structural complexity, rock strength, crustal anisotropy, local changes in 

relative block motions, or regional changes in tectonic kinematics. Sedimentary rocks 

deposited and subsequently uplifted along strike-slip faults record the basinal response to 

evolving fault complexities, and thus offer unique insights into the 4-D evolution of strain 

in these settings. 

The Mecca Hills on the northeast side of Coachella Valley, southern California, 

preserve > 1.3 km of superbly exposed Pliocene-Pleistocene terrestrial sedimentary rocks 

along the southern San Andreas fault and associated strike-slip faults. Recent uplift and 

erosion in the Mecca Hills allows for detailed sedimentological and stratigraphic analysis 

through nearly continuous stratigraphic sections, making it an excellent natural laboratory 

to study the stratigraphic record of strike-slip fault-related deformation.  

Previous workers have documented the stratigraphy and modern structure of the 

Mecca Hills (summarized below), but until this study the evolution of depositional 
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systems in response to changing vertical crustal motions through time was not well 

understood. This study combines geologic mapping, stratigraphic analysis, new 

magnetostratigraphic data, and determination of sedimentary provenance to reconstruct 

past landscapes and environments in response to crustal deformation. This allows us to 

interpret a 3 - 4 Myr history of strike-slip related basin formation in the Mecca Hills, and 

assess the underlying controls on vertical crustal motions within this part of the southern 

San Andreas fault zone.  
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CHAPTER II 

GEOLOGIC SETTING 

 

Southern San Andreas Fault Zone 

The southern SAF zone (Fig. 1) has been the locus of relative motion between the 

Pacific and North American plates since its inception in the Coachella Valley between ca. 

6 and 12 Ma (e.g., Atwater, 1970; Stock and Hodges, 1989; Ingersol and Rumelhart, 

1999; Oskin and Stock, 2003a, b). It consists of a main strand that bounds the northeast 

side of the Coachella Valley and Salton Trough, and is terminated at its southeast end in 

the Brawley seismic zone releasing step-over (Fig. 1). To the northwest of the study area, 

the southern SAF zone splits into the Banning and Mission Creek faults where the fault 

zone approaches a major restraining step-over in San Gorgonio Pass (Fig. 1).  

Transtensional deformation over the past 6-12 Ma in the Salton Trough and Coachella 

Valley has resulted in rapid subsidence and creation of a very deep sedimentary basin 

beneath the modern valley floor (Fuis et al., 1984, 2012; Langenheim et al., 2005; Elders 

and Sass, 1988). Severe extension appears to have ruptured the lithosphere and deflected 

the Moho to shallower depths beneath the Salton Trough, resulting in filling of the basin 

with young (post-6 Ma) sediments and metasedimentary rocks to depths of ~10-12 km 

(e.g. Fuis et al., 1984; Dorsey, 2010). Basin fill of the southern Coachella Valley is 

highly asymmetric and tapers to the southwest where it onlaps basement rocks of the 

Santa Rosa Mountains (Langenheim et al., 2005).  

The modern configuration of the southern San Andreas fault zone is the result of a 

complex Late Cenozoic history beginning with its inception in the Salton Trough at about  
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Figure 1. Geologic map of the Coachella. Modified from map compiled by Dorsey, 2011 
(unpub.). Abbreviations: BF, Banning fault; BSZ, Brawley seismic zone; DH, Durmid 
Hill; EFZ, Extra fault zone; IH, Indio Hills; MCF, Mission Creek fault; MH, Mecca Hills; 
PMF, Pinto Mtn. fault; SAF, San Andreas fault; SGP, San Gorgonio Pass; SJF, San 
Jacinto fault; SJP, San Jacinto Peak; WSDF, West Salton detachment fault. 

 

8 Ma (Axen and Fletcher, 1998; Dorsey et al., 2011). Regional transtension was 

partitioned into extension on the low-angle West Salton detachment fault and strike-slip 

offset on the SAF from latest Miocene to early Pleistocene time. At ~ 1.1 to 1.3 Ma a 

major reorganization of the southern San Andreas fault system resulted in initiation of the 

San Jacinto fault zone and termination of the West Salton detachment fault (e.g. Morton 

and Matti, 1993; Lutz et al., 2006; Janecke et al., 2010; Dorsey et al. 2011). It is 

speculated that a significant but uncertain fraction of the relative plate motion was 

transferred from the southern SAF to the San Jacinto fault zone at this time (Fig. 1).   
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Discrete elongate zones of fault-bounded uplifts along the southern SAF in the 

Indio Hills, Mecca Hills, and Durmid Hill define the northeast boundary of Coachella 

Valley and Salton Trough (Fig. 1). Between these uplifts, the geomorphic expression of 

the SAF varies from expressionless in lowland areas, to vegetation lineaments, dextrally 

offset geomorphic features, fault sags, and scarps (e.g. Sylvester and Smith, 1976; Keller 

et al., 1982; Sieh and Williams, 1990; Dibblee, 1997; Behr et al. 2010). Recent seismic 

imaging of the southern SAF (Fuis et al., 2012) and preliminary finite element modeling 

of fault kinematics through time (Fattaruso and Cooke, 2013) suggest that the Coachella 

valley strand of the SAF, previously assumed to be sub-vertical, may dip about 65° to the 

northeast. The implications of a northeast-dipping SAF in Coachella Valley remain 

unclear, but preliminary modeling suggests it may help explain recent uplift in the Indio, 

Mecca, and Durmid hill regions (Fattaruso and Cooke, 2013). 

Mecca Hills 

 The Mecca Hills are located on the northeast side of the Coachella Valley strand 

of the SAF, about 10 km north of the Salton Sea (Fig. 1). The topography of the Mecca 

Hills defines an elongate zone of heterogeneous strike-slip related deformation and uplift 

of Late Cenozoic terrestrial sedimentary rocks cut by high-angle sub-parallel faults and 

broad to tight en-echelon folds (Fig. 2; Sylvester and Smith 1976; Sheridan et al., 1994; 

Dibblee, 1997; Sylvester, 1999). Previous workers have proposed different models for  

transpressive deformation in the Mecca Hills. Sylvester and Smith (1976) concluded that 

upward-diverging and flattening oblique reverse faults, or ‘flower’ structures, are the 

dominant structural style in the Mecca Hills, with passive deformation of the sedimentary 

cover occurring above highly strained basement rock. Sheridan et al. (1994) noted the  
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Figure 2. Geologic map of the Mecca Hills. Modified from map compiled by Dorsey, 
(2011, unpubl.). Inset map shows structural blocks from Sylvester and Smith (1927). 
Abbreviations: SAF, San Andreas Fault; SCF, Skeleton Canyon Fault; PCF, Painted 
Canyon Fault; PF, Platform Fault; ECF, Eagle Canyon Fault; HSF, Hidden Spring Fault; 
GF, Grotto Fault. 
 

importance of inward-verging reverse faults and folds, or ‘pooch’ structures, formed by 

propagation of faults on the limbs of growing anticlines and rooted in weak sedimentary 

units. The major structures in the Mecca Hills are accompanied by smaller-scale 

transtensional horsetail splay faults, a feature typical of wrench-style tectonics (Fig. 2; 

Wilcox et al., 1973; Sylvester & Smith 1976; Sheridan et al., 1994; Miller, 1998).  

A >1300-m thick continuous succession of sedimentary rocks is exposed in the 

Mecca Hills (Figs. 3, 4). This sequence includes the Mecca Conglomerate, Palm Spring  

Formation, and Ocotillo Conglomerate (Figs. 2, 3) first described by Dibblee (1954). 
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Figure 3. Simplified diagram of stratigraphic and basement relationships southwest and 
northeast of the Painted Canyon Fault near Painted Canyon. 
 

 
 
 
 

 
Figure 4 (next page). Geologic map of the Mecca Hills near Painted Canyon (this study). 
Abbreviations: SAF, San Andreas fault; SCF, Skeleton Canyon fault; PCF, Painted 
Canyon fault; PF, Platform fault; ECF, Eagle Canyon fault.
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Figure 4 (Continued). 
 

The main exposures of Mecca Conglomerate in the central Mecca Hills are limited to the 

southwest side of the Painted Canyon Fault (PCF), where it rests nonconformably on 

crystalline basement rock and grades up-section into the Palm Spring Formation in lower 

Painted Canyon (Figs. 3, 4). Previous workers suggested that coarse deposits exposed 

along Grotto and Hidden Spring faults in the southeast Mecca Hills are also equivalent to 
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the Mecca Formation (Boley et al., 1994). The lower member of the Palm Spring 

Formation conformably overlies the Mecca Formation and consists dominantly of 

interbedded sandstone and siltstone. A prominent angular unconformity separates the 

Palm Spring Formation into lower and upper members, and records an important phase of 

intra-basinal deformation within the fault zone (Figs. 3, 4). The Painted Canyon fault 

(PCF) is an important fault that appears to control the distribution of deposits and 

exposures of basement rock in the central to northwestern Mecca Hills (Figs. 4, 5).  

Sylvester and Smith (1976) divided the central Mecca Hills into three structural 

blocks bounded by the SAF and PCF: (1) the Basin Block southwest of the SAF; (2) 

Central Block between the SAF and PCF, and (3) the Platform Block northeast of the 

PCF (Fig. 2). Each block contains a distinct stratigraphy and style of deformation. The 

Basin Block is deformed in a narrow belt of uplifted and eroding deposits along the 

southwest side of the SAF, and is otherwise mostly subsiding and buried beneath modern 

alluvium of the Coachella Valley. The Central Block contains the thickest exposed 

section of sedimentary rocks in the Mecca Hills, and is an area of intense transpressional 

deformation. The Platform Block consists of shallow basement with an overlying mostly 

undeformed cover of shallowly dipping (<15°) sedimentary rocks (Fig. 2). 



 

 11 

 

 

 

 

 

Figure 5. Geologic cross section from lines A-A’ and B-B’ in Figure 4. Abbreviations: 
SAF, San Andreas fault; SCF, Skeleton Canyon Fault; PCF, Painted Canyon fault; PF, 
Platform fault; ECF, Eagle Canyon fault. 
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CHAPTER III 

METHODS 

 

Geologic Mapping 

Detailed geologic mapping of the central Mecca Hills was conducted in the field 

over the course of two field seasons in 2012 and 2013. Figure 4 is a geologic map of the 

central to northwestern Mecca Hills produced during this study. Stratigraphic formations, 

sub-facies, and geologic contacts were mapped on high resolution Google Earth satellite 

imagery with UTM grid overlay at 1:10,000 scale. Bedrock exposures permit some 

contacts to be inferred from satellite imagery, which was useful when mapping 

inaccessible high-relief areas. 

Measured Stratigraphic Sections 

Stratigraphic sections were measured in the field with a 1.5-m Jacob’s staff at the 

meter to sub-meter scale, accompanied by detailed facies descriptions. Section 1 is a 

composite of 5 sections measured northeast of the PCF (Fig. 4) that were correlated using 

distinct marker horizons. Due to low bedding dips, Section 1 spans a large area and 

crosses significant lateral facies changes. In order to constrain facies architecture in this 

area, several short intervals within section 1 were measured with photography in vertical 

cliff exposures where direct measurements were unattainable. This technique allowed us 

to correlate lateral facies changes from southeast to northwest that are visible high in the 

canyon walls but not exposed at ground level. Section 3 was measured in lower Painted 

Canyon perpendicular to the strike of bedding (Fig. 4).   
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Paleocurrents & Clast Counts 

 Determination of paleocurrent directions was conducted by measuring (1) the 

strike and dip of imbricated clasts in conglomeratic beds, (2) strike and dip of cross-bed 

foresets, (3) trend and plunge of current lineations and tool marks on the base of beds, 

and (4) trend and plunge of fluvial channel axes. Imbricated clast and cross-bed foreset 

measurements provide unique paleoflow directions, while current lineations, tool marks, 

and fluvial channel axes must be coupled with other data to determine a unique paleoflow 

direction.  

 Conglomerate clast counts were conducted by establishing a ~ 1 m square on rock 

outcrops, randomly selecting at least 100 clasts using a systematic grid system, and 

tallying relative abundances of various compositions. The most distinctive composition is 

Orocopia Schist sourced from local basement and the Orocopia Mountains southeast of 

the Mecca Hills. Other compositions of pre-Cambrian to Cretaceous plutonics and 

Tertiary volcanic rocks are sourced from local basement and the Cottonwood Mountains 

(fig. 1).  

Paleomagnetic Analysis 

Previous attempts to date deposits in the Mecca Hills have been partially 

successful, and were based on the presence of the 760-ka Bishop Ash high in the section 

and the abundance of reversed magnetic polarity sites thought to represent the Matuyama 

subchron (2.58- to 0.78-Ma; Chang et al., 1987; Boley et al., 1994). These constraints 

were used to conclude that much of the upper member of the Palm Spring Formation 

exposed in the Mecca Hills was deposited between 0.76- and 2.58 Ma (Chang et al., 

1987; Boley et al., 1994). Boley (1993) and Boley et al. (1994) documented strong 
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normal-polarity overprinting in many of their paleomagnetic samples of the Palm Spring 

Formation in the Mecca and Indio Hills, suggesting that magnetic overprinting may affect 

much of the Palm Spring Formation. They found step-wise thermal demagnetization to be 

much more effective at removing magnetic overprints in their samples than alternating-

field demagnetization.  

Realizing the issues raised by prior paleomagnetic studies in the Mecca Hills, we 

tentatively use recently acquired magnetostratigraphic data (Messe et al., 2012) for 

sections 1 and 3. Samples were collected in the field using three methods: (1) using a 

handheld gasoline powered drill to sample 1-inch diameter oriented cores; (2) collection 

of oriented block samples that were later drilled in the lab; and (3) use of 1-inch diameter 

by 1-inch deep plastic collection cylinders to collect poorly indurated sediments. 

Sampling of Section 3 yielded 57 drilled core sites and 1 oriented hand sample site, with 

an average stratigraphic spacing of ~22 m between sampled sites. Due to the restricted 

access for the gasoline-powered drill in Section 1, these samples consist of 40 oriented 

hand sample sites and 7 plastic cylinder sample sites with an average stratigraphic 

spacing of ~15 m between sites. The number of samples varied between sites based on 

sampling technique and rock quality. On average we collected 4-6 cores at drill sites, 1-5 

blocks and oriented block sites, and 5-7 plastic tubes at soft-sediment sites.  

Samples were analyzed by Bernie Housen and Graham Messe at Western 

Washington University, using alternating-field and thermal demagnetization techniques 

to determine the original magnetic polarity of the deposits. The plastic tube samples 

cannot be thermally demagnetized, and since alternating-field demagnetization appears to 

be ineffective at removing magnetic overprints, we remove these sites (Fig. 6A) from our 
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analysis until further analysis can show convincing original polarities. The remaining 

paleomagnetic data, coupled with the presence of the Bishop Ash high in Section 1, are 

used to estimate sediment-accumulation rates and ages for sedimentary rocks in the 

central Mecca Hills. We use these preliminary magnetostratigraphic data at face value. 

The results will likely be refined and modified pending further sample analyses and 

confidence tests. 
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CHAPTER IV 

RESULTS 

 

Geologic Map and Cross Sections 

 The geologic map (Fig. 4) and cross sections (Fig. 5) provide important context 

for analysis and interpretation of sedimentary rocks in this study. Sedimentary rocks in 

the central Mecca Hills nonconformably overlie Pre-Cambrian and Cretaceous basement 

rocks in a >1300-m thick succession that records late Cenozoic terrestrial sedimentation 

over the past 4 - 5 Ma. Previous workers noted the diversity of facies and abrupt lateral 

and vertical facies changes in the Mecca Hills, especially in relation to structures 

(Sylvester & Smith, 1976; Chang et al., 1987; Sheridan et al., 1994; Boley et al., 1994). 

Our mapping confirms the contrast between the diverse localized facies distributions of 

the upper member of the Palm Spring Formation, and the widespread relatively uniform 

facies distribution of the lower member of the Palm Spring Formation in the central 

Mecca Hills (Fig. 4), similar to the findings of previous workers in the southeast Mecca 

Hills (e.g. Chang et al., 1987; Sheridan et al., 1994; Boley et al., 1994). Our geologic 

cross sections (Fig. 5) help to refine the distribution of sedimentary sequences, basement 

relationships, and structural styles of the Platform, Central, and Basin blocks. Measured 

stratigraphic sections produced during this study are presented in Figure 6A, B. In the 

following section we describe and interpret the Mecca Conglomerate, Palm Spring 

Formation, and Ocotillo Conglomerate based primarily on observations of exposures in 

the central Mecca Hills near Painted Canyon (Fig. 2, 4).  
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Figure 6. (A) Measured stratigraphic Section 1, northeast of the Painted Canyon Fault 
with our preferred correlations to the Geomagnetic Polarity Time Scale (GPTS), and 
estimated ages for limestone LM and the angular unconformity.  
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Figure 6 (Continued). (B) Measured stratigraphic Section 3 with our preferred calculated 
ages for the base of the Mecca Conglomerate, base of the lower Palm Spring member, 
lower angular unconformity, limestone LM, upper angular unconformity (base of upper 
Palm Spring member). 
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Sedimentary Lithofacies 

Mecca Conglomerate (Pm) 

The oldest record of sedimentation exposed in the central Mecca Hills is the 

Mecca Conglomerate, which rests nonconformably on basement rock in lower Painted 

Canyon (Fig. 4) with a total measured thickness of 330 m (Fig. 6). The lower ~150 m 

consists of poorly sorted, weakly bedded (~5 - 10 m thick), interbedded pebble-cobble to 

small-boulder conglomerate and pebbly sandstone with dominantly gneissic clasts with 

lesser granitic and Orocopia Schist calsts derived from nearby basement (Table 1A, Fig. 

6B, Fig. 7A). The upper ~180 m consists of dominantly pebble to cobble conglomerate 

with better-defined bedding ranging from ~1 to 5 m thick. Imbricated clasts indicate a 

dominant paleoflow to the south-southwest with lesser west and northwest paleoflow 

directions (Fig. 6B). The Mecca Conglomerate in lower Painted Canyon is interbedded 

with and gradationally fines up-section into the overlying lower member of the Palm 

Spring Formation (Fig. 6B).  

We conclude that the lower part of the Mecca Conglomerate was deposited by 

debris flow dominated proximal alluvial fans, based on the abundance of poorly sorted, 

weakly bedded conglomerate (e.g., Blair, 1987a), and the approximately radial pattern of 

paleocurrent directions (fig. 6A) that suggest deposition emanating from a point source. 

Locally-derived clast compositions and overall southwest-directed paleocurrent 

directions suggest that coarse gravelly deposits were derived from the northeast, likely 

from the northeast side of the PCF.  The overall fining-up trend records a gradual 

transition from a proximal to distal alluvial-fan environment and depositional processes.
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Table 1. (A) Descriptions and interpretations of sedimentary rock facies in the study area 
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Table 1 (Continued). (B) 
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Figure 7. Photographs of sedimentary rocks exposed in the Mecca Hills. A) Mecca 
Conglomerate in lower Painted Canyon. Hammer circled for scale. (B) Fining upward 
sequence from pebbly sandstone to siltstone in the lower member of the Palm Spring 
Formation. Hammer circled for scale. (C) Interbedded pebble – cobble sandstone and 
siltstone of the upper member of the Palm Spring Formation (Qpu) exposed in Box 
Canyon. Red line indicates angular unconformity separating the upper and lower (Qpl) 
members. (D) Abundant sandstone clasts of the lower member in conglomerate of the 
upper member northeast of the PCF. Pencil circled for scale (E) Medium-bedded 
sandstone and siltstone of the upper member northeast of the PCF (1.5-m Jacob’s staff 
circled). (F) Thinly-bedded sandstone with desiccated siltstone and mudstone of the 
upper member northeast of the PCF. 
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Palm Spring Formation 

The most widely exposed sedimentary unit in the Mecca Hills is the Palm Spring 

Formation, which consists of a lower and upper member that are separated by a persistent 

angular unconformity (Figs. 4, 6B, 8E). The unconformity marks the boundary between 

regionally extensive and relatively uniform facies of the lower member and highly 

variable, localized facies of the upper member observed in the central Mecca Hills.  

Lower Member, Palm Spring Formation (Qpl) 

 The lower member of the Palm Spring Formation is 340 m thick in lower Painted 

Canyon where it conformably and gradationally overlies the Mecca Formation on the 

southwest limb of Mecca Anticline (Figs.4, 6B). The lower member consists of tabular, 

uniformly bedded couplets consisting of grus-like, cross-bedded pebbly sandstone with 

plutonic and gneissic clasts that fines up into biotite-rich green sandstone and siltstone 

(Table 1A, Fig. 7B). Individual beds are laterally continuous with sharp boundaries that 

are traceable for several km’s along strike, typically with little change in facies. 

Paleocurrent indicators suggest southeast-directed transport (Fig. 6B). The lithofacies 

assemblage and stratal architecture of the lower member in the central Mecca Hills is 

similar to that seen in the Indio Hills 25 km to the northwest, providing evidence for its 

regional extent. Exceptions to this are observed in Eagle Canyon where the lower 

member consists of poorly sorted cobble to boulder conglomerate (Table 1A), and in the 

southeast of the study area near Hidden Spring Wash (Fig. 2) where similar coarse facies 

have been previously documented (Chang et al., 1987; Sheridan et al., 1994). 

The laterally extensive tabular sheets of cross-bedded sandstone and siltstone in 

the lower member suggest deposition in a fluvial system comprised of a migrating  
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Figure 8. Photographs of stratigraphic relationships in the Mecca Hills. (A) Coarsening 
upward sequences in lacustrine and nearshore deposits capped by lacustrine flooding 
surfaces between Eagle Canyon and the PCF. (B) Medial alluvial fan deposits (Qpu-pss) 
capped by lacustrine flooding surface and lateral interfingering of nearshore bedded 
sandstone and siltstone (Qpu-bss) with distal alluvial fan deposits (Qpu-ps) of the upper 
member of the Palm Spring Formation. (C) Sandstone-filled mudcracks in dessicated 
mudstone of marker horizon M10a. 10-cm-long divisions on Jacob’s Staff for scale. (D) 
Upper member of the Palm Spring Formation onlapping basement northeast of the PCF. 
(E) Angular unconformity separating lower from upper Palm Spring Formation near Box 
Canyon. (F) Angular truncation of sandstone beds capped by mudstone if the upper 
member of the Palm Spring Formation northeast of the PCF. 
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channel (cross-bedded sandstone) and adjacent overbank floodplain (green siltstone) that 

occupied a broad basin floor. These geometries permitted widespread lateral migration of 

channels and created a very broad sheet-like fluvial architecture (e.g., Miall, 1985; 

Hampton & Horton, 2007). The combination of felsic-plutonic and gneissic clasts with 

southeast-directed paleocurrent directions suggests that the finer, uniform facies of the 

lower member of the Palm Spring Formation were deposited in a large river system that 

flowed southeast down the paleo-Coachella Valley into the Salton Trough, with sources 

mainly in the Cottonwood and Little San Bernardino Mountains. The local coarse facies 

of the lower member likely were deposited in proximal basin-margin alluvial fans. 

Upper Member, Palm Spring Formation (Qpu) 

The upper member of the Palm Spring Formation contains a wide range of 

lithofacies types displaying abundant vertical and lateral variability, in contrast to the 

regionally uniform nature of the lower member. The contrast between deposits on the 

southwest and northeast sides of the PCF makes reliable correlations of upper Palm 

Spring across the PCF difficult. One exception to this is a distinct limestone bed (LM) 

observed northeast of the PCF near Eagle Canyon (110 m Section 1, Figs. 4, 6A), and 

southwest of the PCF in Painted canyon (635 m Section 3, Figs. 4, 6B). The ~3-m thick 

limestone bed is characterized by horizontally stratified ~1- to 5-cm thick beds of platy 

white limestone interbedded with thin (<5-mm) green siltstone in the lower ~1.5 m that 

coarsen to >10-cm thick medium sandstone interbeds in the upper ~1.5 m. Limestone 

beds consist of ~3-mm thick flakey calcite lamina (possibly varves) with rare burrows, 

and is comprised almost entirely of calcareous bladed fossil plant material that appear to 

be grasses. Correlation of the limestone across the PCF is based on its unique and 
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laterally persistent lithologic characteristics, the obvious similarities between exposures 

on both sides of PCF, and its stratigraphic position ~80 – 90 m above an angular 

unconformity observed on both sides of the PCF (Fig. 6A, B). 

Southwest of the PCF in lower Painted Canyon, the upper member of the Palm 

Spring Formation is > 700 m thick and fines up-section from coarse conglomeratic 

sandstone with channel-fill conglomerate to very coarse-grained planar and cross-bedded 

pebbly sandstone and interbedded green ripple-cross laminated siltstone (Fig. 7C), with 

abundance of siltstone interbeds increasing up-section (Table 1A, B, Fig. 6B). Thin 

coarsening-up intervals (0.5 -1.5 m) of claystone to medium-grained sandstone become 

increasingly abundant beginning at 860 m in Section 3 (Fig. 6B). Imbricated clasts, 

channel scours, cross-bedding foresets, tool marks, and flute casts all indicate paleoflow 

to the south-southwest to south-southeast (Fig. 6B). 

The coarsest facies of the upper Palm Spring member southwest of the PCF 

suggest deposition in a proximal to distal alluvial fan system (e.g., Blair, 1987a). Higher 

in the section (Fig. 6), horizontally stratified and cross-bedded coarse-grained sandstone 

and siltstone may represent distal alluvial fan to fluvial environments (e.g., Nichols & 

Hirst, 1998) near the margin of a paleo-lake in the Salton Trough. The thin coarsening 

upward intervals of claystone and medium-grained sandstone are inferred to record short-

lived lake highstands followed by rapid southeast progradation of distal alluvial fans into 

the lake.    

Northeast of the PCF, the base of the upper Palm Spring member near Eagle 

Canyon consists of locally preserved, channelized red cobble-boulder conglomerate that 

abruptly fines up-section into very coarse-grained, medium-grained, and very fine-
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grained facies (Table 1A, Fig. 4, Fig. 6A). This conspicuous basal red boulder 

conglomerate is exposed on the southwest side of Eagle Canyon at the contact between 

the lower and upper members, and resembles similar conglomerates above the 

unconformity in the southeast Mecca Hills (Chang et al., 1987; Sheridan et al., 1994). It 

has a scoured base, is typically less than ~ 30-m thick, and contains exclusively Orocopia 

Schist clasts with southwest-directed paleocurrent indicators (Fig.6). A cobble-lag cap 

separates it from more uniform and widely distributed overlying deposits of the upper 

member.  

Very coarse-grained deposits of the upper member exposed in upper Painted 

Canyon consist of horizontally stratified pebble-cobble conglomerate that grade laterally 

into planar amalgamated, very coarse-grained pebbly sandstone (Table 1A, B, Fig. 4). 

Calcic paleosols and laterally extensive ~ 0.5- to 2-m thick heavily desiccated red 

mudstone beds are irregularly interbedded with the coarser facies of the upper member 

(Fig. 8C). Clast compositions are dominantly felsic-plutonic and gneiss. In addition, 

clasts of reworked sandstone first appear in conglomeratic channel fills several meters 

beneath marker horizon M10a (Fig. 7D, Fig. 6A), within 280-m map distance northeast 

of the PCF (Fig. 4). While other sandstone clasts likely sourced from the Miocene 

Diligencia basin to the east (Law et al., 1996) have been found in the Palm Spring 

Formation, we infer that these sandstone clasts were eroded from the lower member of 

the Palm Spring Formation because of their compositional and textural similarity to the 

lower member and their proximity to the PCF. Imbricated clasts in conglomerate of the 

upper member in upper Painted Canyon record consistent southeast paleoflow, roughly 

parallel to the trace of the PCF (Fig. 4, Fig. 6).  
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Medium-grained facies of the upper member comprise two distinct variants of 

bedded sandstone and siltstone. the first variant consists of well-bedded, normal-graded 

sandstone (0.2- to 1.5-m thick) with thin (1- to 5-cm thick) interbedded siltstone (Fig. 

7E), and other consists of bedded internally structureless sandstone (5- to 20-cm thick) 

with interbedded desiccated siltstone and mudstone (4- to 50-cm thick) (Table 1B, Fig. 

7F). The finest-grained facies are preserved as 20- to 30-m thick coarsening-upward 

sequences of laminated claystone, mudstone, siltstone, and coarse-grained sandstone low 

in section 1 (Table 1B, Fig. 8A). In northwestern-most upper Painted Canyon, similar 

fine-grained facies comprise a ~200-m fining-upward sequence from laminated siltstone 

to mudstone to claystone (Fig. 6A). 

We infer that the red basal conglomerate was deposited during a brief episode of 

southwest-directed transport in alluvial fans derived from local Orocopia Schist basement 

sources (Fig. 2), based on distinctive southwest paleocurrent directions and Orocopia 

Schist clast compositions. Coarse pebble conglomerate and pebbly sandstone of the upper 

member northeast of the PCF were deposited in the medial to distal reaches of alluvial 

fans, respectively (e.g. Blair & McPherson, 1994), that were transported southeast. Rapid 

lateral fining of horizontally stratified conglomerate to planar pebbly sandstone with 

reworked conglomeratic channels is consistent with down-transport facies associations 

observed in active alluvial fans (Blair, 1987a). Clast compositions and southeast-directed 

paleocurrent indicators suggest the fans were sourced from the Cottonwood Mountains 

(Fig. 1). The thicker normal-graded sandstone and siltstone variants (Fig. 7E) are 

interpreted as sheetflood deposits that accumulated in a distal alluvial fan and sand-flat 

setting (e.g., Blair & McPherson, 1994). The thinner featureless sandstone, siltstone, and 
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mudstone facies (Fig. 7F) are interpreted as near-shore mudflat deposits that accumulated 

at the most distal reaches of alluvial fans. In this setting, sheet sands were deposited by 

flash floods on a desiccated mudflat or in very shallow water by hyperconcentrated grain-

flows (e.g., Mulder & Alexander, 2001). We infer that the finest-grained facies were 

deposited by suspension settling in a shallow lacustrine environment based on dominance 

of laminated fine-grained mud and silt and lack of desiccation features.  

Ocotillo Conglomerate (Qo)  

The Ocotillo Conglomerate ranges in thickness from ~5 to >65 m and consists of 

very coarse-grained, horizontally stratified sandstone that coarsens up section to poorly 

sorted pebble-cobble-boulder conglomerate (Table 1B).  Clast compositions are entirely 

felsic-plutonic and gneissic with southwest-directed paleocurrent indicators in the 

northwest and northeast Mecca Hills (Fig. 6A).  On the southwest side of the SAF 

northwest of Painted Canyon, Ocotillo Conglomerate consists of large, several-km-wide, 

overlapping units of horizontally stratified conglomeratic sandstone distinguished by one 

set dominated by felsic plutonic and gneissic clasts and the other set containing almost 

entirely Orocopia Schist clasts. In the southeast Mecca Hills there are many conglomerate 

facies that interfinger with the Palm Spring Formation and persist up to the present day 

alluvial fans, and while the latest progradation of these fans may be linked to Ocotillo 

Conglomerate progradation, they are a generally a much older lithostratigraphic unit. 

The erosional base and widespread thin sheet-like geometry of the Ocotillo 

Conglomerate records basinward progradation of gravels sourced in nearby mountains. In 

the northeast Mecca Hills this unit represents the gravelly deposits of a southwest-

transported alluvial fan system sourced in the Cottonwood Mountains, northeast of the 
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Mecca Hills (Fig. 2). Southwest of the San Andreas Fault the Ocotillo Conglomerate 

likely has been translated a significant distance northwest by right-lateral fault slip from 

its original depositional location. Here, the alternation of contrasting clast compositions 

and basin-ward paleocurrent indicators in the Ocotillo Conglomerate suggest it was 

deposited in overlapping alluvial fans sourced from the Cottonwood Mountains (felsic-

plutonic clast source) and Orocopia Mountains (Schist clast source).   

Stratigraphic and Basinal Architecture  

Lacustrine Sequence, Upper Member Palm Spring Formation 

Facies associations of the upper member northeast of the PCF in the central 

Mecca Hills define a retrogradational architecture that records transgression and retreat of 

a lake shoreline to the northwest, parallel to the PCF. This transgression is recorded in 

deposits from the southeast near Eagle Canyon to the upper end of Painted Canyon wash 

where it crosses the PCF (Fig. 4, Fig. 9). Fine-grained lacustrine and near-shore facies 

exposed low in Section 1 near Eagle Canyon (Fig. 8A) coarsen over a short distance to 

the northwest into laterally equivalent distal and medial alluvial fan facies (bedded 

sandstone and pebbly sandstone). This lateral transition migrates laterally up section from 

southeast to northwest, from Eagle Canyon (Fig. 8B) to the northwestern upper Painted 

Canyon where exposures are limited to high canyon walls or are missing due to erosion.  

Farther up-section, medial to distal alluvial fan facies dominate most of the 

exposures in upper Painted Canyon, with thin interbedded units of nearshore lacustrine 

mudstone (Fig. 8C). These thin units of desiccated red mudstone rest on abrupt lacustrine 

flooding surfaces, indicating the continued presence of a fluctuating lake in the 

southeastern part of the study area (Fig. 8A) during deposition. The gradual fining-
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Figure 9. Facies panel for Section 1 showing northwest transgression of lacustrine mudstone and siltstone (Qpums) and nearshore 
sandstone and siltstone (Qpubss) over distal alluvial fan pebbly sandstone (Qpups) though time. Marker horizons shown as pink lines; 
LM is limestone marker horizon. Stars represent calculated depth-to-basement projected into section from nearby sediment – 
basement contacts. 
 



 

 32 

upward lacustrine sequence high in Section 1, located at the northwest end of upper 

Painted Canyon (Fig. 4, Fig. 6A, Fig. 9), records a shift of the lacustrine depocenter to the 

northwest across a distance of ~ 4.5 km relative to the oldest lacustrine deposits near 

Eagle Canyon.  

In upper Painted Canyon the Ocotillo Conglomerate conformably and 

gradationally overlies lake deposits at the top of the section, where it is truncated against 

the northeast side of the PCF and faulted down against the lower member of the Palm 

Spring Formation on the southwest side of the PCF (Fig. 4). In this area an anomalous, > 

65-m thick coarsening upward wedge of Ocotillo Conglomerate close to the PCF thins 

laterally northeast into a typical ~ 25-m thick conglomerate over a map distance of ca. 

300 m from the PCF.    

Upper Member Northeast of the Painted Canyon Fault 

 Sylvester & Smith (1976) noted the relatively thin nature of the upper Palm 

Spring member where it rests on intermittently exposed basement rock northeast of the 

PCF. Importantly, Section 1 (Fig. 6A) shows that despite relatively low bedding dips (< 

14°) and shallow exposures of basement, the upper member is ~ 800 m thick northeast of 

the PCF. The relationship between basement and overlying deposits (Fig. 10) requires 

low-angle onlapping of the upper member onto basement (Fig. 8D) in order to reconcile 

the large measured thickness and shallow depth to basement in this area. While the 

mechanism that produced accommodation space for the ~ 800 m of deposits on shallow 

basement remains unclear, it is likely related to syn-depositional gentle tilting and 

translation of deposits out of a depocenter that was fixed relative to a releasing bend in 

the PCF, similar to the Ridge Basin in central California (e.g. Crowell, 2003).
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Figure 10. Geologic cross section line C – C’ in Figure 4 on the northeast side of the PCF. Marker horizons used to correlate 
measured section 1 shown as pink lines and labeled (e.g. M2). LM is limestone marker horizon. Stars are calculated depth to basement 
projected into section from nearby basement exposures. Bedding dips and shallow basement requires low-angle down-lapping 
relationship of sedimentary rocks onto basement. Wedging of Ocotillo Conglomerate against transtensional Painted Canyon fault 
splay shown.  
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Progressive Unconformity Southwest of the Painted Canyon Fault 

  The contact between the lower and upper members of the Palm Spring Formation 

is a widespread angular unconformity that varies from high- to low-angle. Detailed 

mapping shows that the angular unconformity is discontinuous and time-transgressive in 

the area of lower Painted Canyon. The contact changes along strike from an angular 

unconformity near the southwest entrance of Box Canyon (Fig. 8E) to a laterally 

equivalent conformable surface at Painted Canyon, in the upper part of the lower Palm 

Spring member (~553 m in Section 3; Figs. 6B, 11).  This surface is 117 m 

stratigraphically below a horizon that we mapped northwest along strike into a second, 

younger angular unconformity at the lower-upper Palm Spring contact northwest of 

Painted Canyon (Figs. 6B, 11).  

The laterally discontinuous and time-transgressive nature of the angular 

unconformity is supported by mapping of the marker limestone bed (LM), which lies 

stratigraphically between the two unconformities (or laterally equivalent surfaces) in the 

area between lower Painted Canyon and Box Canyon (Fig. 11). This relationship suggests 

that (1) there are at least two distinct angular unconformities separating the lower and 

upper Palm Spring, and (2) the lower and upper members are laterally equivalent to each 

other in the interval between the two unconformities between Box Canyon and lower 

Painted Canyon (Figs. 11; 12). Estimates of stratigraphic thickness based on bedding 

attitudes and map distance indicate that the stratigraphic interval between the two 

unconformities thickens from ~117 m at Painted Canyon to ~230 m at a location 2.25 km 

southeast of lower Painted Canyon (Figs. 11; 12).  This geometry provides evidence for 

sedimentation during intrabasinal deformation that produced the angular unconformity. 
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Figure 11. Map showing two angular unconformities (red lines), one in the northwest 
and one in the southeast, that separate the lower and upper members of the Palm Spring 
Formation. Both map into laterally equivalent conformable surfaces (yellow lines). 
Between the unconformities is an intermediate sedimentary package consisting of a 
southeast-thickening wedge of laterally interfingering lower and upper members of the 
Palm Spring Formation. Limestone unit LM maps within the intermediate package. 
Marker horizons used to correlate through Section 1 are shown northeast of the PCF.  
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Figure 12. Simplified diagram illustrating the stratigraphic relationships in Figure 11 
from northwest to southeast across Painted Canyon. Prominent lower unconformity in the 
southeast maps into a laterally equivalent conformable surface in the northwest. Upper 
unconformity in northwest maps into a laterally equivalent conformable surface in 
southeast. Intermediate southeast-thickening growth wedge of laterally interfingered 
lower and upper Palm Spring formation between unconformities. Limestone bed LM is 
within intermediate growth wedge. 
 
 

Stratigraphic Ages and Sediment-Accumulation Rates  

Measured Section 1 

Our paleomagnetic sampling of Section 1 includes 50 sites that yielded 7 

magnetic reversals and 8 magnetochrons. The Bishop Ash high in the section (exact 

stratigraphic position uncertain, projected into Section 1. Fig. 6A), located and identified 

northeast of the PCF by Michael Rymer (pers. communication, 2012) and confirmed in 

this study (Fig. 4), is an important marker that allows us to identify the normal-polarity 

Brunhes subchron (780 ka to present). A reversed-polarity site at 820 m in Section 1 
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suggests that the 780-ka reversal between the Brunhes and the underlying Matuyama 

magnetochron is located above 820 m and below the Bishop Ash, which we estimate to 

be between ~840 and ~870 m in Section 1 (Fig. 6A). Below this level, Section 1 contains 

most of the reversed-polarity Matuyama magnetochron including the normal-polarity 

Jaramillo, Olduvai, and Reunion subchrons (Fig. 6A). Using the minimum and maximum 

possible stratigraphic positions of reversals in Section 1, and their ages, we calculate 

minimum and maximum sediment accumulation rates for each magnetochron (Table 2). 

We extrapolate these accumulation rates to infer the ages of the major stratigraphic units 

and contacts between them. The age of the distinctive limestone marker horizon (LM) is 

thus estimated to be ~2.5 Ma with an uncertainty of 0.2 Ma, and the angular 

unconformity between the lower and upper members of the Palm Spring Formation is 

~2.8 with an uncertainty of 0.3 Ma (Fig. 6A).  

Measured Section 3 

 Paleomagnetic data from our sampling of Section 3 is problematic because it 

suggests only one reversal at the base of a thick section. Of the 58 sites sampled through 

~1270 m of section, all but one site at the base of the section yielded negative polarity. 

We would expect Section 3 to contain some of the reversals recorded in Section 1 

because of its great stratigraphic thickness and presence of the ca. 2.5-Ma LM limestone 

that is correlated from Section 1 (Fig. 6). This suggests at least two possible 

interpretations of the data and age of deposits in section 3, which we have constructed as 

two scenarios below.  
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Table 2. Calculated sediment-accumulation rates based on magnetic reversal ages and stratigraphic thickness from Section 1 
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Scenario 1: If we assume that the magnetic reversal between 2 and 19 m near the 

base of Section 3 (Fig. 6A) represents the boundary between the Gauss and Matuyama 

magnetochrons (2.58 Ma), we can calculate the predicted sediment-accumulation rates 

from this reversal to limestone unit LM. LM is found at 635 m in Section 3 and its age is 

estimated from section 1 between 2.3 Ma and 2.7 Ma. The measured thickness from the 

possible Gauss-Matuyama reversal to the limestone is thus ~ 615-633 m.  The large 

uncertainty in our age estimates results in significant overlap of the age of the limestone 

unit and the Gauss – Matuyama boundary. The resulting sediment-accumulation rate for 

the ~620 m of section ranges from instantaneous deposition (geologically impossible) to 

~6 mm/yr. This wide range of possible sediment-accumulation rates precludes well-

constrained age estimates for stratigraphic boundaries in Section 3. Based on these 

assumptions a minimum sediment-accumulation rate of ~0.7 mm/yr, which is not 

included in our estimate range, is required to deposit the section from our reversal (at ~19 

m) to the top of the section (at 1300 m) within the dominantly reverse-polarity Matuyama 

and explain the dominance of reverse-polarity sites in Section 3. 

Scenario 2: Alternatively, the dominance of magnetically reversed sites in Section 

3 may be due to reversed overprinting of some sites during the later part of the Matuyama 

magnetochron. In this case we could estimate sediment ages and accumulation rate in two 

ways: (1) use a range of sedimentation rates estimated for Section 1 (0.3 – 0.9 mm/yr) 

and extrapolate them from horizon LM; or (2) assume that the unconformity in Section 1 

(~2.8 Ma, Fig. 6A) correlates to the lower unconformity in Section 3 (550 m, Fig. 6B), 

and calculate a sediment-accumulation rate between it and horizon LM in Section 3. 

Using assumption (1), we would estimate an age range of ~3.0-4.8 Ma for the base of the 
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Mecca Conglomerate, ~2.6-3.7 Ma for the base of the lower Palm Spring member, ~2.4-

3.0 Ma for the lower unconformity, ~2.2-2.7 Ma for the upper unconformity (base of the 

upper Palm Spring member), and ~0.5-2.0 Ma for the top of the section. Using 

assumption (2) the sediment-accumulation rate would range from geologically impossible 

instantaneous deposition to ~0.1 mm/yr. The large uncertainty precludes useful age 

estimates under assumption (2).  

Given the uncertainty in our age estimates, we tentatively use age ranges from 

Scenario 2, assumption (1), with the expectation that these estimates will change pending 

future sampling and analysis. Stratigraphic age estimates reported below carry 

uncertainties of ~0.3 – 1.0 Myr.  
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CHAPTER V 

DISCUSSION 

 

Paleogeographic and Fault Reconstructions 

The data presented above allow us to reconstruct the paleogeography of the 

central Mecca Hills by tracking migration of depocenters and structurally controlled sub-

basins through time (Fig. 13). In this section we interpret a ~ 4-Myr history of 

subsidence, deposition, and uplift along the southern San Andreas fault in this area based 

on the preceding stratigraphic analysis.  

Mecca Conglomerate  

 Prior to deposition of the Mecca Conglomerate, the central block was not 

accumulating sediment and basement rock likely was exposed and eroding at the surface. 

Beginning at roughly 3.0-4.8 Ma, subsidence of the Central Block lead to deposition of 

the Mecca Conglomerate in southwest-directed alluvial fans sourced from uplifted 

basement of the Platform Block (Fig. 13A). The presence of thick Mecca Conglomerate 

southwest of the PCF and its absence northeast of the fault suggests that southwest-side 

down slip on the PCF lead to subsidence of the Central Block and uplift of the Platform 

Block (Fig. 14A).  Systematic fining-up in the upper Mecca Conglomerate records a 

transition to much more widespread subsidence and retrogradation of fluvial 

environments over fault-bounded alluvial fans prior to deposition. Retreat and 

submergence of alluvial fans likely was controlled by cessation of slip on the PCF, and 

either a decrease in the rate of sediment delivery or an increase in subsidence rate, or 

possibly both (e.g., Heller & Paola, 1992; Paola et al., 1992; Gordon & Heller, 1993).  
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Figure 13. Paleogeographic reconstructions of the Mecca Hills from ~3.5 – 0.74 Ma. (A) 
Initiation of southwest-side down slip on the PCF and deposition of the Mecca 
Conglomerate between ~3.0-4.8Ma (B) Between 2.6 and 3.7 Ma the southeast-directed 
fluvial system deposited the lower member of the Palm Spring Formation across the 
alluvial fans of the Mecca Conglomerate and the PCF. (C) At roughly 2.4-3.0 Ma 
southwest-side up slip on the PCF resulted in deformation of the basin. (D) By ~2.4 Ma a 
lake system was established northeast of the PCF due to pooling of water against a 
topographic high along the PCF. (E) At ~1.0 Ma initiation of the transtensive PCF splay 
shifted the lake depocenter to the northwest. (F) post-700-ka uplift and erosion of the 
Mecca Hills shortly after deposition of the Ocotillo Conglomerate from progradation of 
gravel from the Cottonwood and Orocopia mountains.  
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Figure 14. Block diagrams illustrating the evolution of vertical crustal motions and 
depositional systems from ~3.5 – 1 Ma in the Mecca Hills. (A) Southwest-side down slip 
on the PCF and deposition of the Mecca Conglomerate. (B) Overlapping deposition of 
the regionally extensive facies of the lower member of the Palm Spring Formation on the 
vertically quiescent PCF. Local conglomerates sourced from nearby basement highlands. 
(C) Southwest-side up slip of the PCF created the angular unconformity between the 
lower and upper members of the Palm Spring Formation, partitioned the basin along the 
PCF, and created a lake system northeast of the PCF (D) Initiation of the transtensive 
PCF splay shifted the lake depocenter to the northwest. 
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Lower Member, Palm Spring Formation  

 The lower member of the Palm Spring Formation was deposited across the PCF in 

a southeast-directed fluvial system beginning roughly 2.6-3.7 Ma (Fig. 13B). Similarity 

of facies in the lower member across the PCF, and lack of evidence for syntectonic 

deposition (unconformities, growth strata, etc.), suggests that subsidence and 

sedimentation were continuous over a large area during deposition (Figs 13B, 14B). The 

tabular sheet-like architecture of alternating sandstone and siltstone units suggests that 

the lower member accumulated in a broad river valley with dimensions similar to those of 

the modern Coachella Valley (Fig. 1).  

Deformation, Erosion, Angular Unconformity  

 The angular unconformity between the lower and upper members of the Palm 

Spring Formation records the onset of localized deformation and a major structural 

reorganization of the fault zone at approximately 2.4-3 Ma (Fig. 13C). Southwest of the 

PCF, lateral interfingering of the lower and upper Palm Spring members, southeastward 

thickening of the upper member, and time-transgressive nature of the unconformity 

suggest that deposition continued at least locally in this area during deformation that 

created the unconformity (Fig. 12). This phase of deformation partitioned the basin into 

northeast and southwest sub-basins separated by the PCF, with each sub-basin 

accumulating distinct localized deposits (Figs 13D, 14C).  In addition to localized 

deformation, regional subsidence and production of accommodation space is also 

required to explain continued deposition of the upper Palm Spring member throughout 

the Mecca Hills.  
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Upper Member, Palm Spring Formation  

The upper Palm Spring member records a change to more localized fault-

controlled sedimentation and southwest-side up vertical displacement across the PCF 

while regional subsidence and production of accommodation space allowed for continued 

deposition throughout the Mecca Hills. Northeast of and adjacent to the PCF, a lake 

formed near Eagle Canyon shortly after deposition of the Palm Spring member began at 

ca. 2.8 Ma (Figs. 13D, 14C). We infer that water sourced from local rivers in the 

Cottonwood Mountains pooled on the northeast side of a topographic and structural high 

along the PCF. Evidence supporting this topographic high is seen in the presence of 

lower Palm Spring member clasts in upper the upper member (Fig. 7D) and growth strata 

within the upper member on the northeast side of the PCF (Fig. 8F). Southeast-directed 

alluvial fans sourced from the Cottonwood Mountains interacted at their lower end with 

the lake on the northeast side of the PCF. During deposition of the upper member at 

about 1.0 Ma, the lacustrine depocenter migrated ~ 4.5 km northwest due to localized 

subsidence northeast of a transtensional splay of the PCF (Figs. 13E, 14D). The lake 

remained fixed at this location until it was filled by deposition of the overlying Ocotillo 

Conglomerate. 

Southwest of the PCF, deposition of the upper Palm Spring member persisted 

intermittently through deformation that created two angular unconformities (Fig. 12). 

After formation of the upper unconformity at roughly 2.2-2.5 Ma, it is unclear whether 

deposition took place on the flank of growing topography, or passively buried a 

submerged area of former uplift southwest of the PCF.  
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Ocotillo Conglomerate (ca. 0.76 Ma) 

 Significant slowing of subsidence shortly before 0.76 Ma resulted in basinward 

progradation of large alluvial fans from the Cottonwood and Orocopia mountains and 

deposition of the Ocotillo Conglomerate across most or all of the Mecca Hills (Fig. 13F). 

Northeast of the PCF, the Bishop Ash is interbedded in the lower part of the Ocotillo 

Conglomerate (Figs. 4, 6A), while southwest of the PCF the Bishop and Thermal Canyon 

ash are interbedded in the uppermost upper member of the Palm Spring Formation 

beneath the Ocotillo gravel (Fig. 4). This relationship shows that progradation of Ocotillo 

gravel took place around 760 ka, and supports geomorphic evidence that the gravel was 

derived from the Cottonwood and Orocopia mountains northeast of the Mecca Hills (fig. 

13F). Thickening of Ocotillo Conglomerate in a localized wedge adjacent to the PCF in 

upper Painted Canyon records continued subsidence northeast of the northwestern PCF 

splay during gravel progradation (Fig. 13F). Octotillo progradation likely was driven by 

slowing of regional subsidence during the transition from regional subsidence and 

sediment accumulation to the modern phase of uplift and erosion. 

Local Versus Regional Scale of Fault-Zone Evolution  

 It is well documented that local transpression and transtension within strike-slip 

fault zones results in significant rapid short-lived vertical displacements (e.g. Christie-

Blick & Biddle, 1985; Teyssier et al., 1995; Aksu et al., 2000; Wakabayashi et al., 2004; 

Mann, 2007). Sinuous or anastamosing strike-slip fault zones are expected to produce 

localized migrating zones of transpressive and transtensive deformation due to the 

kinematics of translating rocks along non-linear fault surfaces (e.g. Christie-Blick & 

Biddle, 1985; Spotila et al. 1998; Wakabayashi et al. 2004; Cormier et al., 2006; 
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Benowitz et al., 2011). This can result in rapid local accumulations of sediments that are 

subsequently uplifted and eroded as they are translated through a heterogeneous strain 

field (e.g., Crowell, 1974; Saddler et al., 1993; Crowell, 2003). Therefore the spatial and 

temporal extent of deposits produced by deformation in strike-slip fault zones is governed 

to large degree by the spatial scale of local fault zone complexities and rates of fault slip.  

In the Mecca Hills, evolution of local structures and the resulting complexly 

evolving strain field can explain the abundant nonlinear faults, complex history of fault-

controlled deposition, reactivation and inversion of the PCF, migration of depocenters, 

and the time-transgressive angular unconformity. This explanation does not require any 

changes in relative plate motion or regional fault kinematics. According to this 

conceptual model, all deformation recorded in the stratigraphy of the Mecca Hills would 

be expected to occur at a spatial scale similar to that of local faults and fault-bounded 

blocks. Similarly, any stratigraphic signals produced by regional-scale tectonic changes 

should be expressed at a spatial scale significantly larger than that of local fault-zone 

complexities.  

While much of the sedimentation and deformation history in the Mecca Hills can 

be explained by evolution of local fault-zone complexities, two prominent stratigraphic 

signals are recognized over a much larger area of the Coachella Valley and require a 

regional explanation. First, the angular unconformity separating the lower and upper 

members of the Palm Spring Formation is present along ~50 km of the SAF from the 

southeast Mecca Hills to the Indio Hills (Boley et al., 1994). This observation suggests 

that the episode of deformation that created the angular unconformity in the Mecca Hills 

reflects regional-scale adjustments along the southern SAF, and that deposition of the 
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upper Palm Spring member resulted from a return to regional-scale subsidence within a 

more complex and heterogeneous strain field. The age of the unconformity is not well 

dated in the Indio Hills, and thus the age correlation inferred here has yet to be fully 

tested. 

 Second, Late Cenozoic deposits that contain the Bishop Ash (760 ka) and 

Thermal Canyon Ash (740 ka) are currently being uplifted in a roughly 90 km long by 2-

7 km wide belt adjacent to the Coachella Valley strand of the SAF, from Durmid Hill in 

the southeast to the northern Indio Hills in the northeast (Fig. 1). Bilham & Williams 

(1985) described the modern SAF in Coachella Valley as having a ‘sawtooth’ geometry 

with local deviations in fault strike that produce segmented areas of transpressive uplift in 

the Indio Hills, Mecca Hills, and Durmid Hill (Fig. 1). Prior to 740 ka, variable localized 

deformation along the SAF in Coachella Valley was superimposed on overall regional 

subsidence and sedimentation. It appears that a profound change in the regional behavior 

of the SAF in Coachella Valley has inverted a belt along the fault zone from net 

subsidence to net uplift and erosion that started at roughly 700 ka. The scale over which 

this inversion has occurred is much larger than the scale of local fault-zone complexities 

in the Mecca Hills. This tectonic event may be recorded in other areas of the southern 

SAF system, as seen in the onset of contractional deformation in the southern San Jacinto 

Fault zone at ca. 0.6 Ma (Steely et al. 2006; Lutz et al. 2006; Kirby et al. 2007), and the 

onset of rapid uplift and exhumation of fault-bounded crustal slices along the SAF in San 

Gorgonio Pass at ca. 0.7 Ma (Spotila, 1998). The regional scale of post-700 ka basin 

inversion suggests that this change was driven by a regional rather than local control on 

the sense and distribution of vertical crustal motions along the fault zone.  
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Changes in the regional kinematics of the southern SAF zone may be linked to 

major reorganizations of the system through time. Initiation of the San Jacinto Fault zone 

ca. 1.2 Ma (e.g. Lutz et al., 2006; Steely et al. 2006; Janecke et al, 2010) apparently did 

not coincide with a significant change in the Coachella Valley segment of the southern 

SAF. Instead, the two regional tectonic reorganizations may be related to (1) changes in 

partitioning of slip rates between the San Jacinto fault and SAF through time (Bennett et 

al., 2004); or (2) trade-offs between slip focused on the SAF through San Gorgonio Pass 

versus transfer of strain northward through the Eastern Transverse Ranges into the 

Eastern California Shear zone (e.g., Dolan et al., 2007). The ultimate causes of regional 

changes in fault zone behavior and basin evolution along the southern SAF are not known 

and are the topic of ongoing study.  
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CHAPTER VI 

CONCLUSIONS 

 

 Our stratigraphic analysis reveals a 3-4 Myr history of complex basin 

development and deformation along the Mecca Hills segment of the southern SAF. The 

tectonostratigraphic framework preserved in the Mecca Hills suggests that the paleo-

landscape changed dramatically in response to rapid, punctuated, alternating periods of 

vertical displacements related to changing sense and patterns of slip on the PCF. The PCF 

changed from southwest-side down slip (Mecca Conglomerarte) to vertically quiescent 

(lower member of Palm Spring Formation) to southwest-side up slip (upper Palm Spring 

member to the present), possibly with an increased rate of vertical offset after ~700 ka.  

 While the underlying controls on changes in kinematics of the PCF remain 

unclear, we conclude that basin evolution in the Mecca Hills was controlled by evolution 

of local fault-zone complexities superimposed on larger-scale changes in regional 

subsidence and uplift. Changes in regional fault kinematics likely caused extensive uplift 

and erosion along the SAF in Coachella valley at approximately 2.5-3 Ma, as recorded in 

a regional unconformity in the Mecca and Indio Hills, and again from ~0.7 Ma to the 

present as indicated by the current phase of regional uplift along the fault zone. Regional 

scale tectonic changes in this region are not well understood, but probably are related to 

alternation of slip transfer between the SAF, San Jacinto fault zone, and Eastern 

California shear zone.  

Large uncertainties presently exist in our age estimates for deposits in the Mecca 

Hills that we hope to reduce with future paleomagnetic sampling and analysis. Improved 
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age constraints will allow for more precise evaluation of the timing, rates, and controls on 

basin evolution and deformation. This will provide improved insights into the relative 

importance of evolving fault-zone complexities versus changes in regional fault 

kinematics on basin development and deformation along the Coachella Valley segment of 

the southern SAF. 
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