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ABSTRACT
Transtensional basins embedded in the San Andreas fault system 

of Southern California (United States) and northwestern Mexico are 
fi lled with sediment derived from the Colorado River, which drains a 
large area of the western U.S. interior. The sediment is rapidly bur-
ied, heated, and mingled with intrusions in the deep basins to form 
a new generation of recycled crust along the active plate boundary. 
Using a range of values for total basin depth, relative volume of 
mantle-derived intrusions, and composition of early rift deposits, the 
volume of Colorado River–derived sediment in the basins is brack-
eted between 2.2 and 3.4 × 105 km3, similar to the volume of rock 
that likely was eroded from the Colorado River catchment over the 
past 5–6 m.y. The volumetric rate of crustal growth by sedimentation 
is ~80–130 km3/m.y./km, comparable to growth rates in subduction-
related island arcs and slow seafl oor spreading centers. Sedimentary 
and basinal processes thus play a major role in crustal evolution and 
recycling in this setting, and may be important at other rifted margins 
where a large river system is captured following tectonic collapse of a 
prerift orogenic highland.

INTRODUCTION
While erosional exhumation in orogenic mountain belts is widely 

recognized as an important agent of crustal evolution, the causes and con-
sequences of sediment transfer from stable continental interiors to active 
plate margins are less well studied. The Colorado River, with a catchment 
area of 630,000 km2, has eroded a large volume of sediment from the Col-
orado Plateau and delivered it to fault-bounded basins along the Pacifi c–
North America pate boundary in Southern California (United States) and 
northwestern Mexico over the past 5–6 m.y. (Fig. 1) (Spencer et al., 2001; 
Pederson et al., 2002; Dorsey et al., 2007). The rapid fl ux of sediment to 
these basins exerts a strong infl uence on deformation style, crustal rheol-
ogy, synrift magmatism, and rift architecture (Moore, 1973; Fuis et al., 
1984; Persaud et al., 2003; González-Fernández et al., 2005; Lizarralde 
et al., 2007; Bialas and Buck, 2009), though many aspects of this con-
trol remain poorly understood. Until recently it was not possible to assess 
the rate of mass transfer from the Colorado Plateau to the plate boundary 
because the depth and age of the basins were not well known. Recent stud-
ies of basin geometry and chronology now make it possible to perform this 
analysis and explore its implications for regional-scale crustal recycling.

This paper presents a new estimate of the volume of Colorado River–
derived sediment stored in deep basins along the oblique-divergent plate 
boundary in the Salton Trough and northern Gulf of California (Fig. 1). 
Existing geophysical data are combined with recent age constraints and a 
range of values for three variable parameters to calculate the volumetric 
rate of crustal addition by sedimentation. Despite existing uncertainties, 
the analysis shows that fl uvial erosion, transport, and deposition are an 
effi cient suite of processes by which crust is recycled from the continent 
interior to form new crust along the active oblique-rift plate boundary.

TECTONIC AND HYDROLOGIC SETTING
The southern San Andreas fault and its southern continuation in 

the Gulf of California occupy the oblique-dextral boundary between the 

Pacifi c and North American plates (Fig. 1). The transform system fi rst 
formed ca. 25–30 Ma offshore of Southern California and later moved 
inboard to its present position (Atwater and Stock, 1998). Since ca. 6 Ma, 
relative plate motion has been focused along the Gulf of California and 
Salton Trough (Oskin et al., 2001; Oskin and Stock, 2003). This motion 
has deformed, dilated, and ruptured the lithosphere to create a series of 
deep sediment-starved ocean spreading centers in the south and shallow 
marine to nonmarine sediment-fi lled basins in the north (Moore, 1973; 
Lonsdale, 1989; Lizarralde et al., 2007).

The drainage history of the Colorado River is linked to the Tertiary 
tectonic and climatic evolution of southwestern North America. Late Creta-
ceous to early Tertiary rivers fl owed east and northeast across the Colorado 
Plateau, away from high topography in the Laramide thrust belt (Elston 
and Young, 1991; Potochnik and Faulds, 1998). Middle Tertiary extension 
in the Basin and Range Province thinned the crust and lowered the eleva-
tion of the former mountain range (McQuarrie and Wernicke, 2005). The 
Colorado River drainage was established along its present course at the 
end of the Miocene (ca. 6 Ma) when it was diverted into the Salton Trough 
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Figure 1. Tectonic setting of western North America, showing Colo-
rado River (C.R.) catchment and area of Colorado River sediment 
accumulation (yellow outline). Shallow bathymetry in northern Gulf 
of California is due to large infl ux of sediment from Colorado River. 
SAF—San Andreas fault.
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lowland by a series of rapid lake fi lling and spillover events (Meek and 
Douglass, 2001; Spencer et al., 2001; House et al., 2005). Intensifi cation of 
monsoonal fl ow up the newly formed Gulf of California, and the resulting 
increase in precipitation, may have caused overtopping of lakes that drove 
the Colorado River into this tectonic lowland (Chapin, 2008).

PLATE BOUNDARY SEDIMENTARY BASINS
The Salton Tough is a large transtensional basin that straddles the 

oblique-divergent plate boundary in Southern California and northwestern 
Mexico (Fig. 2). The Colorado River enters this tectonic lowland at Yuma, 
Arizona, and forms a low-relief delta that currently isolates the Salton Sea 
from marine water in the Gulf of California. The Salton Trough subsided 
deeply from Late Miocene to early Pleistocene time in response to regional 
transtension and extension (Winker, 1987; Axen and Fletcher, 1998). Colo-
rado River sand fi rst arrived in the basin at 5.3 Ma and quickly overwhelmed 
the basin fi ll (Dorsey et al., 2007). A tectonic reorganization at 1.1–1.3 Ma 
terminated slip on the western basin-bounding low-angle detachment fault, 
initiated the modern San Jacinto and Elsinore strike-slip fault zones, and 
initiated uplift and erosion of late Cenozoic basins in the western Salton 
Trough (Steely et al., 2009). Subsidence continued beneath the axial Salton 
Trough and produced a sedimentary basin as deep as 10–12 km, where Col-
orado River sediment is intruded by young mafi c and silicic sills (Elders et 
al., 1972; Fuis et al., 1984; Schmitt and Vazquez, 2006). Sediment accumu-
lation rates of 2.2–2.3 mm/yr are indicated by presence of the 760 ka Bishop 
Tuff 1.7 km below the surface (Herzig et al., 1988).

Colorado River sediment also dominates basins in the southern 
Salton Trough and northern Gulf of California, where Holocene accumu-
lation rates are ~2–3 mm/yr (Van Andel, 1964). Seismic refl ection surveys 
reveal regionally correlative sequences in fault-bounded basins that drop 
off quickly to depths of 5–7 km (Fig. 2; Persaud et al., 2003; Pacheco et 
al., 2006; Aragón-Arreola and Martín-Barajas, 2007; González-Fernández 
et al., 2005; González-Escobar et al., 2009). In the Altar basin, Pliocene–
Pleistocene sediments containing Cretaceous foraminifers (derived from 
the Colorado Plateau) have an average thickness of 4 km and are underlain 
by a thin basal unit of uncertain provenance (Pacheco et al., 2006). The 
basin deepens dramatically to the southwest across the Cerro Prieto fault, 
where total depth is not known. Despite the diffi culty of imaging total 
basin depth with seismic refl ection data, the age of sediments at 5–7 km 
depth is estimated to be 2.0–3.5 Ma, using known accumulation rates. 
This is much younger than the age of earliest input from the Colorado 
River (5.3 Ma) and suggests either that early sedimentation rates were 
much slower than Pleistocene–Holocene rates, or that acoustic basement 
beneath the layered sedimentary deposits is composed of rift-related 
metasedimentary rock.

Several lines of evidence support a hypothesis that crystalline base-
ment beneath the axial basins consists of late Cenozoic synrift sediments 
that are rapidly heated and converted to metamorphic rock during basin 
subsidence and fi lling. Seismic refraction surveys in the Salton Trough 
(Fuis et al., 1984) and northern Gulf of California (González-Fernández 
et al., 2005) reveal vertical velocity gradients indicating a transition from 
basinal sediments into underlying denser rock. Seismic velocities in the 
upper 5 km (sediments) increase from ~2.0 to5.2 km/s (1900–2500 kg/
m3) and merge continuously downward into low-density basement (mid-
dle crust) identifi ed as metasedimentary rock. The basement has an aver-
age velocity of 5.65 km/s, slower than expected for Cretaceous and older 
plutonic rocks (5.9–6.0 km/s), and the velocity profi les lack a discrete 
break that would indicate a nonconformable contact between sediments 
and underlying plutonic rock (Fuis et al., 1984; González-Fernández et 
al., 2005). The data therefore suggest that pre-Cenozoic continental litho-
sphere has fully ruptured by extension beneath the fault-bounded basins, 
and the new space is being fi lled with young synrift sediment from above 
and mantle-derived intrusions from below (Fuis et al., 1984). According to 

this model, crust between ~5 and 10–12 km depth consists of late Cenozoic 
metasedimentary rock, mostly derived from the Colorado River, mixed 
with mafi c to silicic intrusions. A 10–12-km-deep basin fi lled since 5.3 Ma 
would require an average sediment accumulation rate of 1.9–2.3 km/m.y. 
(1.9–2.3 mm/yr), consistent with measured rates of 2–3 mm/yr in Pleisto-
cene and Holocene deposits (Van Andel, 1964; Herzig et al., 1988).

VOLUME CALCULATIONS
The data summarized above are used here to estimate the volume of 

Colorado River sediment in fault-bounded subsurface basins of the Salton 
Trough and northern Gulf of California. The volume is bracketed between 
lower and upper bounds using the crustal model of Fuis et al. (1984), mea-
sured areas of six basinal domains (Fig. 2), and likely minimum and maxi-
mum values for three variable parameters: (1) total basin depth; (2) relative 
volume of igneous intrusions in the basins; and (3) age and composition 
of sediment in the deep basins, which may include locally derived Middle 
to Late Miocene deposits that predate input from the Colorado River (e.g., 
Helenes et al., 2009) (see the GSA Data Repository1). Using this approach, 
the total volume of sediment in the subsurface basins is bracketed between 
2.2 and 3.4 × 105 km3 (Table 1). This estimate does not include known 
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Figure 2. Map of fault-bounded basins embedded in oblique-di-
vergent Pacifi c–North America plate boundary, Salton Trough and 
northern Gulf of California. Colored lines show locations of geo-
physical transects (keyed to colored citations) that provide images 
of subsurface basins. Areas of numbered domains are combined 
with range of basin depths to estimate sediment volumes. AF—Altar 
fault; AmF—Amado fault; B.H.—basement high; BTF—Ballenas 
transform fault; CB—Consag basin; CPF—Cerro Prieto fault; DMF—
De Mar fault; EF—Elsinore fault; P—Puertecitos; SAF—San Andreas 
fault; SJF—San Jacinto fault; SF—San Felipe; TF—Tiburon fault.

1GSA Data Repository item 2010120, data constraints and assumptions, 
is available online at www.geosociety.org/pubs/ft2010.htm, or on request from 
editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, 
CO 80301, USA.
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Colorado River–derived sediments in the western Salton Trough and north-
east corner of the Gulf of California because these volumes are relatively 
small and diffi cult to calculate. This omission is partly compensated for 
by the assumption of vertical basin margins, which produces a slight over-
estimate of sediment volume. These errors are orders of magnitude smaller 
than the sheer volume of subsurface basins for which rapid Pliocene–
Pleistocene accumulation of Colorado River sediment is well documented.

To assess the possibility that such a large volume of sediment was 
derived from the Colorado River, we can compare it to the volume of 
rock eroded from the source using two approximations. First, spatially 
averaged total erosion of 843 m (Pederson et al., 2002) applied over a 
catchment area of 3.37 × 105 km2 (plateau only) would imply 2.8 × 105 km3 
of rock eroded from the Colorado Plateau. However, sediment eroded 
between 30 and 6 Ma was not delivered to these basins (Flowers et al., 
2008). Correcting for the ratio of post–6 Ma to pre–6 Ma erosion (Flow-
ers et al., 2008, their fi gure 9) and adding modest inputs from the Vir-
gin and Gila Rivers yields a revised estimate of ~2.0 × 105 km3. Because 
rock eroded from the plateau is mostly sedimentary rock, and much of 
the sediment in the modern basins is deeply buried and compacted, a den-
sity correction is not required to compare the volume of sediment in the 
basins to sediment eroded from the source. Using a second method, we 
can multiply pre-dam sediment discharge (1.2–1.5 × 108 t/yr; Meade and 
Parker, 1985) by the time since fi rst arrival of Colorado River sediment 
in the Salton Trough (5.3 m.y.), and convert mass to volume assuming an 
average basin-fi ll density of 2560 kg/m3 (Fuis et al., 1984). This yields an 
equivalent volume of 2.5–3.1 × 105 km3 that would have been delivered 
to the plate boundary at early (A.D.) 1900s discharge rates. Thus, despite 
existing uncertainties, the large volume of sediment stored in subsurface 
basins of the Salton Trough and northern Gulf of California appears to 
roughly match the volume of rock that was eroded from the Colorado 
River catchment over the past 5–6 m.y.

The rate of crustal growth by sediment accumulation in these basins 
can be expressed as volume (2.2–3.4 × 105 km3) per time (5.3 m.y.) per 
length along strike of the plate boundary (~500 km), and is ~80–130 km3/
m.y./km. This is similar to rates of crustal growth by magmatic accre-
tion documented at subduction-related island arcs (30–200 km3/m.y./km; 
Dimalanta et al., 2002) and calculated for slow seafl oor spreading cen-
ters (50–160 km3/m.y./km; for 10–20 mm/yr spreading rate and 5–8 km 
crustal thickness).

DISCUSSION AND CONCLUSIONS
Figure 3 illustrates the lithospheric rupture model for crustal struc-

ture and sedimentary basins in the Salton Trough and northern Gulf of 
California. The Colorado River has delivered a large volume of sediment 
to these basins over the past 5–6 m.y., supplying felsic material that is 
quickly buried and metamorphosed to form a new generation of crust 
transferred from the craton interior. The elevation drop of ~2000 m from 

the Colorado Plateau to the Salton Trough was created by Tertiary exten-
sional collapse of the Cordilleran orogenic belt, and represents signifi cant 
potential energy that drives the modern source-to-sink conveyer belt.

While the contribution of sediment input to crustal growth has been 
recognized for more than 30 yr (Moore, 1973; Fuis et al., 1984; Nicolas, 
1985), crystalline basement typically is not included in regional sedi-
ment budgets that seek to balance the volume of sediment transferred 
from a terrestrial source to marine basins (e.g., Einsele, 1992). If the 
crustal model proposed for this setting applies to other rifted margins, 
the fate of sediment derived from large continental catchments may be 
partially obscured as it is converted to metamorphic basement in deep 
rift basins. This may also explain the origin of transitional crust at many 
passive continental margins. Sedimentary and basinal processes thus 
appear to play a major role in crustal evolution at rifted and oblique-rift 
margins, where continental crust is mobilized by erosion and recycled to 
form new crust at rates comparable to those documented for island arcs 
and seafl oor spreading centers.
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TABLE 1. CALCULATION OF SEDIMENT VOLUMES, SALTON TROUGH AND NORTHERN GULF OF CALIFORNIA

Domain number 654321
Area (km2) 1730 3545 7300 5130 17000 4750

min. max. min. max. min. max. min. max. min. max. min. max.

Sediments* 4 5 4 5 4 4 4 5 4 5 4 5
Metasediments* 6 7 6 7 0 0 4 5 4 5 4 5
Intrusions† 0.4 0.1 0.4 0.1 n.a. n.a. 0.4 0.1 0.4 0.1 0.4 0.1
Non-Colorado R.§ 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1
Volume 11,418 19,376 23,397 39,704 21,900 28,470 27,702 48,222 105,400 159,800 29,450 44,650

Total: Minimum volume = 219,267 km3 ( = 2.2 × 105 km3); maximum volume = 340,222 km3 ( = 3.4 × 105 km3).
*Thickness in kilometers. 
†Fraction of metasediments volume occupied by intrusions.
§Thickness of non-Colorado River sediment in kilometers.
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