
Spectral Sequence Notes: Filtered algebras, Feb. 17.

1. The Lie filtration of the Universal Enveloping Algebra

We start with an example.

Definition 1.1. Let V be a vector space over a field k. We define a unital asso-
ciative algebra

TV := k ⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V ) · · · =
∞⊕
i=0

V ⊗i.

Multiplication is by concatenation so that

(a1 ⊗ · · · ⊗ ak)⊗ (b1 ⊗ · · · ⊗ bl) = (a1 ⊗ · · · ⊗ ak ⊗ b1 ⊗ · · · ⊗ bl)

Definition 1.2. Let L be a Lie algebra over a field k. Let I be the two-sided ideal
of TL generated by all elements of the form [x, y]− x⊗ y + y ⊗ x for x, y ∈ L.

U(L) = TL/I

The algebra U(L) has a number of nice properties.

(1) The ideal is generated by the difference between the commutator of x and
y in TV and the Lie bracket of x and y. Thus U(L) contains L as a sub-Lie
algebra (where the bracket in U(L) is the commutator).

(2) If L is a Lie algebra with bracket equal to zero, then U(L) is the symmetric
algebra on L. That is, given a vector space basis of L, {x1, x2, . . . },

U(L) = k[x1, x2, . . . ].

(3) In general, U(L) is the size of the symmetric algebra on L. That is, choose
an ordered basis for L, {x1, x2, . . . }. Then U(L) has a basis of 1 together
with monomials xr1i1x

r2
i2
· · ·xrkik where i1 < i2 < · · · < ik and ri ∈ Z>0.

This is easy to prove by using the relations in I to take any monomial of
length n in the basis elements, and reorder to get a monomial of length n
with the right order plus monomials of length less than n.

Definition 1.3. Let A be a k-algebra. An algebra filtration of A is either

(1) an increasing filtration: 0 = F−1A ⊆ F 0A ⊆ F 1A ⊆ · · · satisfying
(a) The unit map k → A factors through F 0A and
(b) (F pA) · (F qA) ⊆ F p+qA.

(2) a decreasing filtration: A = F 0A ⊇ F 1A ⊇ · · · satisfying

(a) F 1A ⊆ F 0A = A
ε−→ k is 0.

(b) (F pA) · (F qA) ⊆ F p+qA.

The associated graded E0A is, in the first case ⊕∞p=0F
pA/F p−1A and in the second

case ⊕∞p=0F
pA/F p+1A. In both cases E0A is a graded, augmented k-algebra.

Definition 1.4. The algebra TV can be graded by length of monomials. U(L)
cannot be graded this way since the generators of I are not homogeneous with
respect to length of monomials. But the grading on TV gives a filtration of U(L)
called the Lie filtration.

F pU(L) = image(k ⊕ L⊕ L⊗2 ⊕ · · · ⊕ L⊕p)
That is F pU(L) is the image of those tensors of length ≤ p from TL.
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The algebra TL can be graded by using the tensor length. That grading induces
a filtration on U(L).

Lemma 1.5.
E0U(L) ∼= Sym(L)

The right hand side is the “symmetric algebra” on the underlying vector space
of L. That is, if {x1, x2, . . . } is a vector space basis for L, then

Sym(L) = k[x1, x2, . . . ].

We leave the proof as an exercise, but we observe that multiplication of elements
from L is now commutative. If x, y ∈ L, then in U(L),

x⊗ y − y ⊗ x = [x, y], so x⊗ y = y ⊗ x+ [x, y].

In F 2U(L)/F 1U(L), [x, y] = 0, so x⊗ y = y ⊗ x.

2. The bar resolution and bar complex

The bar resolution gives a natural resolution of k by free left A-modules. Of
course we can calcuate Ext and Tor with any resolution, but to develop our spectral
sequences we want a situation where a filtration of our algebra leads to a filtration
of the resolution.

Let A be a unital, associative, augmented k-algebra.

Definition 2.1. The bar resolution of k, (B∗(A), d∗) is given by

(1) Bn(A) = A⊗(n+1) := A⊗k A⊗k A⊗k · · · ⊗k A.
(2) We write as shorthand

a0[a1| · · · |an] for a0 ⊗ a1 ⊗ · · · ⊗ an ∈ Bn(A).

(3) d0(a) = ε(a) For n > 0,

dn(a0[a1| · · · |an]) =
n−1∑
i=0

(−1)ia0[a1| · · · |aiai+1| · · · |an] + (−1)na0[a1| · · · |an−1]ε(an).

The notation is chosen to be compact, and to emphasize the left A-module
structure by putting the leftmost copy of A on the outside of the brackets. It
also emphasizes that Bn(A) is a free A-module, with an A-basis given by taking a
vector space basis inside the brackets.

Lemma 2.2. d∗ is a differential, that is dn−1 ◦ dn = 0.

This is a standard proof like many similar proofs in first year algebraic topology.

Lemma 2.3. (B∗A, d∗) is a free resolution of k by left A-modules. That is the
augmented bar resolution,

· · · d3−→ A⊗k A⊗k A
d2−→ A⊗k A

d1−→ A
d0−→ k

is exact.

Proof. We prove this by constructing a contracting homotopy, s0.

s0(a0[a1| · · · |an]) = 1[a0| · · · |an].

We want to show
dn+1s0 + s0dn = 1Bn(A)
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which shows that the identity map on the augmented bar resolution is chain ho-
motopic to the zero map, and thus that there is no homology.

We first consider the exceptional case n = 0.

(d1s0 + s0d0)(a) = d1(1[a]) + s0ε(a) = a− 1 · ε(a) + 1 · ε(a) = a.

Now we do the general case:

(dn+1s0 + s0dn)(a0[a1| · · · |an] = dn+1(1[a0| · · · |an]) + s0(
n−1∑
i=0

(−1)ia0[a1| · · · |aiai+1| · · · |an]+

(−1)na0[a1| · · · |an−1]ε(an))

=a0[a1| · · · |an] +
n∑
i=1

(−1)i1[a0| · · · |ai−1ai| · · · |an] + (−1)n+11[a0| · · · |an−1]ε(an)

+
n−1∑
i=0

(−1)i1[a0| · · · |aiai+1| · · · |an] + (−1)n1[a0| · · · |an−1]ε(an)

Clearly all terms cancel other than a0[a1| · · · |an]. So we’ve established that (dn+1s0+
s0dn) = 1Bn(A). �

2.1. The bar complex and Tor. Recall that for a left A-module N and a right
A-module M , TorA(M,N) is computed by the following sequence of steps

(1) Make a resolution of N by free left A-modules, C∗.
(2) Tensor C∗ with M : M ⊗A C∗.
(3) Take homology:

Hi(M ⊗A C∗) = TorAi (M,N).

From the previous section, B∗(A) gives a free resolution of k. So for a right
A-module M ,

TorAi (M,k) = Hi(M ⊗A B∗(A)).

Definition 2.4. The bar complex for A with coefficients in k is

B∗(A) = k ⊗A B∗(A).

The cobar complex for A with coefficients in k is

B
∗
(A) = HomA(B∗A, k).

Since the bar resolution was exact, after tensoring we at least still have a com-
plex, though it may or may not be exact. Furthermore,

Bn(A) = k ⊗A A⊗(n+1) = k ⊗A A⊗k A⊗n ∼= A⊗n.

Confusingly then, the bar complex (as groups) is a shift of the bar resolution. But
the differential is not shifted, and the bar complex is a complex of k-vector spaces
only, but not a complex of left A-modules.

With this definition,

Hi(B∗(A)) = TorAi (k, k) =: Hi(A; k).
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2.2. The bar resolution and Ext. Recall that for leftA-modules, M,N , ExtA(M,N)
is computer by the following sequence of steps.

(1) Make a resolution of M by free left A-modules C∗.
(2) Make a cochain complex by mapping into N :

C∗ = HomA(C∗, N)

(3) Take cohomology:

H i(C∗) = ExtiA(M,N).

From the previous section, B∗(A) gives a free resolution of k. and

H i(B
∗
A) = ExtiA(k, k) =: H i(A; k).

3. The filtered bar and cobar complexes

Suppose A has an algebra filtration as in Definition 1.3. This gives a filtration
of complexes as follows.

F pBn(A) =
∑

p0+···+pn=p

F p0A⊗k F p1A⊗k · · · ⊗k F pnA ⊆ Bn(A).

There is something to check. We need to know that dn : F pBn(A) → Bn−1A.
Using the multiplicative property of the filtration, it is clear that

a0| · · · |an ∈ F pBn(A)⇒ a0| · · · |aiai+1| · · · |an ∈ F pBn−1(A).

We also need to understand what happens with the last term of the differential
on the bar resolution. In the case of an increasing filtration, ε(an) ∈ k ⊆ F0A. So
that term of the differential may live in a smaller filtration, but certainly stays in
F p.

In the case of a decreasing filtration, if an is in F pA for p > 1, ε(an) = 0, so that
last term of the differential is 0 (which is in all filtrations). Otherwise, an ∈ F 0A
and no higher filtration, and ε(an) is also in F 0.

Lemma 3.1. Suppose A is a filtered algebra. The filtration on A induces a filtration
on B∗(A).

Proof. Recall

Bn(A) = k ⊗A Bn(A) ∼= A⊗n.

It will be helpful to have an explicit formula for the differential on this complex.
Of course this is derived from the differential on B∗A.

dn[a1| · · · |an] = ε(a1)[a2| · · · |an]+
n−1∑
i=1

(−1)i[a1| · · · |aiai+1| · · · |an]+(−1)n[a1| · · · |an−1]ε(an)

To understand the edge case (n = 0, 1) observer that B0A = k and d1 = 0.
Now that we have an explicit formula, we see that the same argument we used

to see that the filtration on A induced one on B∗A applies in this situation. �

Lemma 3.2. Suppose A is a filtered algebra. The filtration on A induces a filtration
on B

∗
(A). If the filtration on A was increasing, the one on B

∗
(A) is decreasing,

and vice versa.
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Proof. We note that

B
n
(A) = HomA(BnA, k) ∼= Homk(BnA, k)

(in fact the second isomorphims hold for any left A-module M in place of k). So,
given an increasing filtration on A we define

F pBnA = {γ ∈ BnA : γ|F p−1BnA = 0}.
If A had had a decreasing filtration, we would have a similar definition, but with
γ|F p+1 = 0. �

4. Spectral Sequence

4.1. The spectral sequences. With the preliminaries out of the way, we now
have spectral sequences computing H∗(A; k) and H∗(A; k). To identify the E1

(or E1) terms we have the following lemma. Recall that E0 is our shorthand for
the associated graded object consisting of the direct sum of the relative filtration
quotients.

Lemma 4.1. Let A be a unital, associative, augmented, filtered algebra. Then

E0B∗A = B∗(E
0A)

E0B∗A = B∗(E
0A)

E0B
∗
A = B

∗
(E0A).

Note that each of the complexes above are bigraded. We indicate the grading by
(s, t). The first index s corresponds to tensor length, so that for example

Bs,∗E
0A = (E0A)⊗n+1.

This is called the “homological” (or when appropriate “cohomological”) degree.
The second index, t, is the grading induced by the filtration, so that B∗,tE

0A is
the chain complex made by considering filtration t at all levels module the next
smaller filtration (t − 1 or t + 1 depending on whether this is an increasing or
decreasing filtration). This is called the “internal” (or sometimes “topological”)
degree.

Proposition 4.2. Let A be a unital, associative, augmented algebra, with an in-
creasing filtration. Then there is a homology spectral sequence with

E1
p,q = Hp+q(B∗,p(E

0A)) = TorE
0A

p+q,p(k, k) = Hp+q,p(A; k).

drp,q : Er
p,q → Er

p−r,q+r−1

E∞p,q = F pTorAp+q(k, k)/F p−1TorAp+q(k, k)

There is a cohomology spectral sequence with

Ep,q
1 = Hp+q(B

∗,p
(E0A)) = Extp+q,pE0A (k, k) = Hp+q,p(A; k).

dp,qr : Ep,q
r → Ep+r,q−r+1

n

Ep,q
∞ = F pExtp+qA (k, k)/F p+1Extp+qA (k, k)

If instead we have a decreasing filtration on A, we write F−pA for F p and we
still get homology and cohomology spectral sequences respectively, with the same
data.
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For an increasing filtration with F−1A = 0, our E1 (and thus all Er) term is 0
for p < 0 and for p + q < 0. Thus this spectral sequence is confined to the first
quadrant plus the upper triangle of the fourth quadrant.

If in addition, F 0A = k, the spectral sequence is 0 when q < 0, so it is actually
a first quadrant spectral sequence.

4.2. Multiplication.

Proposition 4.3. The cobar complex, B
∗
(A) is an algebra. The differential is a

derivation under this algebra structure.

Proof. Let
c ∈ Bn

(A) = Homk(Bn(A), k), d ∈ Bm
(A).

Then c · d ∈ Bn+m
(A) is defined by

(c · d)([a1| · · · |an+m]) = c([a1| · · · |an]) · d([an+1| · · · |an+m]).

This gives an associative multiplication, where 1 ∈ k = B
0
(A) is the unit.

We want to calculate the differential.

∂(c · d)([a1| · · · |an+m+1]) = (c · d)(δ[a1| · · · |an+m+1])

= (c · d)(ε(a1)[a2| · · · |an+m+1] +
n+m∑
i=1

(−1)i[a1| · · · |aiai+1| · · · |an+m+1]

+ (−1)n+m+1[a1| · · · |an+m]ε(an+m+1))

= c(ε(a1)[a2| · · · |an+1] +
n∑
i=1

(−1)i[a1| · · · |aiai+1| · · · |an+1]) · d([an+2| · · · |an+m+1])

+ c([a1| · · · |an]) · d(
n+m∑
i=n+1

(−1)i[an+1| · · · |aiai+1| · · · |an+m+1]

+ (−1)n+m+1[an+1| · · · |an+m]ε(an+m+1))

Note that

(1) c([a1| · · · |an]ε(an+1)) · d([an+2| · · · |an+m+1])

= c([a1| · · · |an]) · ε(an+1) · d([an+2| · · · |an+m+1])

= c([a1| · · · |an]) · ·d(ε(an+1)[an+2| · · · |an+m+1])

So we can add 0 to the expression for ∂(c · d) by adding the first expression from
(1) (with the appropriate sign) and subtracting the last expression from (1) (with
the same appropriate sign).

This gives precisely

∂(c · d)([a1| · · · |an+m+1]) = (∂c)([a1| · · · |an+1]) · d([an+2| · · · |an+m+1)

+ (−1)nc([a1| · · · |an]) · (∂d)([an+1| · · · |an+m+1])

= [(∂c) · d+ (−1)nc · (∂d)]([a1| · · · |an+m+1]).

In other words,
∂(c · d) = ∂c · d+ (−1)nc · ∂d.

�
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Remark: The multiplication on B
∗
(A) induces the Yoneda multiplication on

Ext∗A(k, k).

Remark: If there is enough finiteness so that

B
n
(A) = (A∗)⊗n

(the tensor product of the vector space dual of A) then this product is the con-
catenation product.

Proposition 4.4. Let A be as in Proposition 4.2. Then the spectral sequence
from Proposition 4.2 associated to the filtration of B

∗
(A) is a spectral sequence of

algebras.
The multiplication on all Er terms is induced by the multiplication in B

∗
(A)

so that the multiplication on the E0 and E1 terms is induced by is induced by the
multiplication on B

∗
(E0A).

5. The universal enveloping algebra example.

Let A = U(L) with the Lie filtration as in Section 1, and notation (e.g. basis
for L) as in Section 1. So L has basis {x1, . . . , xn}, and

E0U(L) = S(L) = k[x1, . . . , xn].

The overline on xi isn’t really necessary as this is an element of

F 1U(L)/F 0U(L) = (k ⊕ L)/k = L

but it will be convenient to remind us where we are working.
In the cohomology spectral sequence from Proposition 4.2 for A,

Ep,q
1 = Extp+q,pS(L) (k, k) = E(c1, c2, . . . , cn)

where each ci is Ext1,1 and can be defined as an element of Homk(B1,1(E
0A), k) by

ci(xj) = δij.

Notice that this E1-term is concentrated in degree q = 0, so although there can
be a non-zero d1, there can’t be any higher differentials. Also observe that since
ExtS(L)(k, k) is dual to TorS(L)(k, k), we can make the same claim for the homology
spectral sequence.

We will calculate the differentials in the cohomology spectral sequence via the
following steps.

(1) Describe the E0-term, B∗(S(L)).

(2) Give a basis for Tor
S(L)
1,1 (k, k) and Tor

S(L)
2,2 (k, k).

(3) Use those bases to calculate d11,0 : E1
1,0 → E1

2,0.

(4) Dualize to get d2,01 : E2,0
1 → E1,0

1 .
(5) Use the fact that d1 is a derivation to deduce d1 on the rest of Ep,0

1 .
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Step 1: We indicate the first few stages of the bar complex. The top row gives the
homological degree.

0 1 2

k ←−−− S(L) ←−−− S(L)⊗k S(L) ←−−−

0 ←−−−−−
ε(x)−ε(x)

[x]

ε(x)[y]− [xy] + [x]ε(y) ←−−− [x|y]

Step 2: The equivalence classes in H1 of the set of cycles

{[x1], . . . , xn} is a basis for Tor1,1.

The equivalence classes in H2 of the set of cycles

{[xi|xj]− [xj|xi]}i<j is a basis for Tor2,2.

Step 3: We take a basis element for Tor2,2, take a representing cycle [xi|xj]− [xj|xi]
in B2(S(L)), and lift to an element of B2(U(L)), namely [xi|xj] − [xj|xi].
Note that this is in F 2B∗(A). Then we apply d2 (the differential in B∗(A)).

d2([xi|xj]− [xj|xi]) = ε(xi)[xj]− ε(xj)[xi]− ([xixj]− [xjxi]) + [xi]ε(xj)− [xj]ε(xi)

= 0− [xixj − xjxi] + 0 = [−[xi, xj]] = [−λki,jxk] = −λki,j[xk].
We use the Einstein summation convention, so that in the expressions with
a subscript k and a superscript k, we sum over k.

In the expression with nested brackets, the outer bracket is notation from
the bar complex. The inner bracket is the Lie bracket. The λki,j are the
structure constants in L, that is the Lie bracket

[xi, xj] = λki,ixk

Step 4: We want to calcuate d1(ck). We write

Xi,j = [xi|xj]− [xj|xi].
d1(cl)(Xi,j) = cl(d

1(Xi,j)) = cl(−λki,jxk) = −λli,j
The collection {cicj}i<j forms a basis for Ext2,2S(L) dual to the given basis for

Tor
S(L)
2,2 . We’ve just calculated

(2) d1(cl) =
∑
i<j

−λli,jcicj =
∑
i<j

λli,jcjci.

Step 5: We just remark that we can extend d1 to the rest of the E1-term since we
know it is a derivation and since the cl generate.

Finally we remark two things. The spectral sequence collapses at E2 since Ep,q
1 = 0

if q 6= 0. Also, since the E∞ term is 0 for q 6= 0, we get

ExtpA(k, k) = Ep,0
∞ = Ep,0

2 .

In other words Ext∗A(k, k) is calculated from the homology of the complex E(c1, . . . , cn)
with the given differential from equation (2).


