Spectral Sequence Notes: Filtered algebras, Feb. 17.

1. THE LIE FILTRATION OF THE UNIVERSAL ENVELOPING ALGEBRA
We start with an example.

Definition 1.1. Let V' be a vector space over a field k. We define a unital asso-
crative algebra

TV=koVaVeV)e(VeVaV) =V
i=0
Multiplication is by concatenation so that
(@ Qa)2bi @ b)) =(® - Queb e - ob)

Definition 1.2. Let L be a Lie algebra over a field k. Let I be the two-sided ideal
of TL generated by all elements of the form [x,y] —x @y +y R x for z,y € L.

U(L)=TL/I

The algebra U(L) has a number of nice properties.

(1) The ideal is generated by the difference between the commutator of x and
y in TV and the Lie bracket of x and y. Thus U(L) contains L as a sub-Lie
algebra (where the bracket in U(L) is the commutator).

(2) If L is a Lie algebra with bracket equal to zero, then U(L) is the symmetric
algebra on L. That is, given a vector space basis of L, {x1, s, ...},

U(L) = kfz1, 2s, ... ]-

(3) In general, U(L) is the size of the symmetric algebra on L. That is, choose
an ordered basis for L, {x1,zs,...}. Then U(L) has a basis of 1 together
with monomials xj'x;? - - - 2;* where 4 < iy < --- < i} and r; € Zso.

This is easy to prove by using the relations in I to take any monomial of
length n in the basis elements, and reorder to get a monomial of length n

with the right order plus monomials of length less than n.

Definition 1.3. Let A be a k-algebra. An algebra filtration of A is either
(1) an increasing filtration: 0 = F~'A C FYAC F'A C --- satisfying
(a) The unit map k — A factors through F°A and
(b) (FPA)-(F1A) C FPHiA.
(2) a decreasing filtration: A = F'A D F'A D --- satisfying
(a) FIACF'A= A5k isO.
(b) (FPA)-(F1A) C FPtiA.
The associated graded E°A is, in the first case @32 FPA/FP~'A and in the second
case @;’;OFPA/FPHA. In both cases E°A is a graded, augmented k-algebra.

Definition 1.4. The algebra TV can be graded by length of monomials. U(L)
cannot be graded this way since the generators of I are not homogeneous with
respect to length of monomials. But the grading on TV gives a filtration of U(L)
called the Lie filtration.

FPU(L) = image(k ® L & L** @ --- @ L)

That is FPU(L) is the image of those tensors of length < p from TL.
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The algebra T'L can be graded by using the tensor length. That grading induces
a filtration on U(L).

Lemma 1.5.
E°U(L) = Sym(L)
The right hand side is the “symmetric algebra” on the underlying vector space
of L. That is, if {x1,z,...} is a vector space basis for L, then
Sym(L) = k[zy, xa,...].

We leave the proof as an exercise, but we observe that multiplication of elements
from L is now commutative. If x,y € L, then in U(L),

rRY—y®r =[xy, s0r@y=yx+ [,y
In FPU(L)/F'U(L), [z,y] =0,s0 1Q@y =y @ .

2. THE BAR RESOLUTION AND BAR COMPLEX

The bar resolution gives a natural resolution of k by free left A-modules. Of
course we can calcuate Ext and Tor with any resolution, but to develop our spectral
sequences we want a situation where a filtration of our algebra leads to a filtration
of the resolution.

Let A be a unital, associative, augmented k-algebra.

Definition 2.1. The bar resolution of k, (B.(A),d,) is given by
(1) Bu(A) = A®H) = A, A®, A®y - @ A.
(2) We write as shorthand
aplai| -+ lay] for ap®a; ® -+ ® a, € B,(A).
(3) do(a) = €(a) Forn >0,

n—1

dn(aolar| - [an]) =Y (=1 aglar] -+ - Jasaia] -+ [an] + (=1)"aolar |- - - |an1]e(an).
i=0
The notation is chosen to be compact, and to emphasize the left A-module
structure by putting the leftmost copy of A on the outside of the brackets. It
also emphasizes that B, (A) is a free A-module, with an A-basis given by taking a
vector space basis inside the brackets.

Lemma 2.2. d, is a differential, that is d,,_, o d,, = 0.
This is a standard proof like many similar proofs in first year algebraic topology.

Lemma 2.3. (B.A,d.) is a free resolution of k by left A-modules. That is the
augmented bar resolution,

B AR AR A A, A ANk
15 ezact.
Proof. We prove this by constructing a contracting homotopy, $o.
so(aolar] - - lan]) = 1fao| - - [an].

We want to show
dny150 + Sodn = 1B, (4)
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which shows that the identity map on the augmented bar resolution is chain ho-
motopic to the zero map, and thus that there is no homology.
We first consider the exceptional case n = 0.

(dyso + sodo)(a) = di(1[a)) + see(a) =a—1-€(a) +1-€(a) = a.

Now we do the general case:

n—1
(dny150 + sodn)(aolar] - - an] = dni1(Lao| - - - |an]) + so Z )'aolar| -+ |aiaia] - - an]+
=0
(=1)"ao[ar] - - - lan—1]e(an))
=aola1] - - - |an] +Z ao| -+ |ai-1as| -+ Jan] + (=1)" " 1ag| - - - |an-1]e(an)
n—1
+ aol - laiaia| -+ lan] + (=1)"Lao| -+ |an-1)e(an)
1:0
Clearly all terms cancel other than ag[a;] - - - |a,]. So we've established that (d, 1150+
sodn) = 1B, (4)- O

2.1. The bar complex and Tor. Recall that for a left A-module N and a right
A-module M, TorA(M , N) is computed by the following sequence of steps

(1) Make a resolution of N by free left A-modules, C..
(2) Tensor C, with M: M ®,4 Ci.
(3) Take homology:

Hi(M @4 C.) = Tor (M, N).

From the previous section, B.(A) gives a free resolution of k. So for a right

A-module M,
Tord (M, k) = H;(M ®4 B,(A)).

Definition 2.4. The bar complex for A with coefficients in k is
B.(A) = k®a B.(A).
The cobar complex for A with coefficients in k is
B (A) = Homu(B.A, k).

Since the bar resolution was exact, after tensoring we at least still have a com-
plex, though it may or may not be exact. Furthermore,

Bo(A) = k@4 A% — k@4 A @, A®" = A%,

Confusingly then, the bar complex (as groups) is a shift of the bar resolution. But
the differential is not shifted, and the bar complex is a complex of k-vector spaces

only, but not a complex of left A-modules.
With this definition,

H;(B.(A)) = Tor(k, k) =: Hy(A; k).
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2.2. The bar resolution and Ext. Recall that for left A-modules, M, N, Ext (M, N)
is computer by the following sequence of steps.

(1) Make a resolution of M by free left A-modules C,.
(2) Make a cochain complex by mapping into N:

C* = Homyu(Cy, N)
(3) Take cohomology:
H'(C*) = Ext, (M, N).
From the previous section, B.(A) gives a free resolution of k. and

H'(B"A) = Ext’y(k, k) =: H'(A; k).

3. THE FILTERED BAR AND COBAR COMPLEXES

Suppose A has an algebra filtration as in Definition 1.3. This gives a filtration
of complexes as follows.

FPB,(A)= >  FMA@FMA®; - @, F"AC B,(A).
PO+ +pn=p

There is something to check. We need to know that d,, : FPB,(A) — B,_1A.
Using the multiplicative property of the filtration, it is clear that

agl -+ |an € FPBy(A) = ag| -+ - |a;ai1| - - - lan € FPB,_1(A).

We also need to understand what happens with the last term of the differential
on the bar resolution. In the case of an increasing filtration, €(a,) € k C FyA. So
that term of the differential may live in a smaller filtration, but certainly stays in
FP.

In the case of a decreasing filtration, if a,, is in F?A for p > 1, €(a,,) = 0, so that
last term of the differential is 0 (which is in all filtrations). Otherwise, a,, € F°A
and no higher filtration, and €(a,,) is also in F°.

Lemma 3.1. Suppose A is a filtered algebra. The filtration on A induces a filtration
on B.(A).
Proof. Recall
B,(A) =k ®4 B,(A) = A%
It will be helpful to have an explicit formula for the differential on this complex.
Of course this is derived from the differential on B, A.
n—1
dolar] -+ |an) = e(ar)fas| - - [+ Y (=1)'[ar] -+ |aiaiga| - |an]+(=1)"[a] - - - |an—1)e(an)
i=1
To understand the edge case (n = 0,1) observer that ByA = k and d; = 0.

Now that we have an explicit formula, we see that the same argument we used
to see that the filtration on A induced one on B, A applies in this situation. 0

Lemma 3.2. Suppose A is a filtered algebra. The filtration on A induces a filtration
on B (A). If the filtration on A was increasing, the one on B (A) is decreasing,
and vice versa.



Proof. We note that
B"(A) = Homy(B,A, k) = Homy(B,A, k)
(in fact the second isomorphims hold for any left A-module M in place of k). So,
given an increasing filtration on A we define
FPB"A = {y € B"A: y|pr-1p,4 = 0}

If A had had a decreasing filtration, we would have a similar definition, but with
’Y|Fp+1 = 0. ]

4. SPECTRAL SEQUENCE

4.1. The spectral sequences. With the preliminaries out of the way, we now
have spectral sequences computing H,(A;k) and H*(A;k). To identify the E*
(or ;) terms we have the following lemma. Recall that E° is our shorthand for
the associated graded object consisting of the direct sum of the relative filtration
quotients.

Lemma 4.1. Let A be a unital, associative, augmented, filtered algebra. Then
E°B,A = B,(E°A)
E'B,A = B,(E"A)
E'B"A = B'(E°A).

Note that each of the complexes above are bigraded. We indicate the grading by
(s,t). The first index s corresponds to tensor length, so that for example

B, E°A = (E°A)®"H1,

This is called the “homological” (or when appropriate “cohomological”) degree.

The second index, ¢, is the grading induced by the filtration, so that B, ,E°A is
the chain complex made by considering filtration t at all levels module the next
smaller filtration (¢t — 1 or ¢ + 1 depending on whether this is an increasing or
decreasing filtration). This is called the “internal” (or sometimes “topological”)
degree.

Proposition 4.2. Let A be a unital, associative, augmented algebra, with an in-
creasing filtration. Then there is a homology spectral sequence with

ED) 0
Epo = Hyeo(Bop(E°A)) = Tory 7 (k. k) = Hyrop (A k).
d;;’q : E;,q — B

p—r,q+r—1
Ex = F?Tor, (k. k)/FP~" Tor;!

p+q

(k’ k)
There is a cohomology spectral sequence with
BP9 = HPT(B(E°A)) = Extb %P (k, k) = HP 9P (A k).
dP1 . g9 pPrraTl
EPY = FPExt (k) FP BEot ™ (k, k)
If instead we have a decreasing filtration on A, we write F""PA for FP and we

still get homology and cohomology spectral sequences respectively, with the same
data.



For an increasing filtration with F~'A = 0, our E' (and thus all E") term is 0
for p < 0 and for p + ¢ < 0. Thus this spectral sequence is confined to the first
quadrant plus the upper triangle of the fourth quadrant.

If in addition, F°A = k, the spectral sequence is 0 when ¢ < 0, so it is actually
a first quadrant spectral sequence.

4.2. Multiplication.

Proposition 4.3. The cobar complex, F*(A) is an algebra. The differential is a
deriwation under this algebra structure.

Proof. Let
¢ € B"(A) = Homy(B,(A),k),d € B"(A).
Then c-d € §n+m(A) is defined by
(c-d)lar -+ lantm]) = clar] -~ lan]) - d([anta] - - [ansm]).

This gives an associative multiplication, where 1 € k = FO(A) is the unit.
We want to calculate the differential.

O(c-d)([ar]---lantm]) = (¢~ d)(0lar] -~ - [animia])

n+m

= (c-d)(e(ar)[az| - - - |animsa] + Z(—l)i[aﬂ e lagai| - |angma]

+ (_1)n+m+1[a1| T |an+m]6<an+m+1>>

n

= ce(ar)fag] -+ anaa] + Y (=1)'ar] -+~ |asaisa] -+~ ana]) - d([@nso] - - [@nmsa])

+ c(lar] - - fan]) - d(.z (=D [ans1| - - laiaia] - [anim]
+ (=)™ ansa] - - anim]€(@nime))
Note that
(1) c(lar] - lanle(ant)) - d([ansal - -+ [antm1])
= c(la] -+ [an]) - €(@ns1) - d([anya| - - |@nimi])
= c([ar] - - [an]) - -d(e(ant1)[anta| - - [antmia])

So we can add 0 to the expression for d(c - d) by adding the first expression from
(1) (with the appropriate sign) and subtracting the last expression from (1) (with
the same appropriate sign).

This gives precisely

d(c-d)([a]---lantmil]) = (Oc)([ar] - -ansa]) - d([antal - - Jansmia)
+ (=D)"c(ar] - - lan]) - (0d)([ans1] - -+ |anyma])
=[(0¢) - d+ (=1)"- (0d)]([ar] - - - [an1m+1]).

In other words,

I(c-d)=0c-d+ (—=1)"c-dd.
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Remark: The multiplication on E*(A) induces the Yoneda multiplication on
Ext (k, k).

Remark: If there is enough finiteness so that

—=n

B'(4) = ()"

(the tensor product of the vector space dual of A) then this product is the con-
catenation product.

Proposition 4.4. Let A be as in Proposition 4.2. Then the spectral sequence
from Proposition 4.2 associated to the filtration ofE*(A) 18 a spectral sequence of
algebras.

The multiplication on all E™ terms is induced by the multiplication in E*(A)
so that the multiplication on the Ey and Ey terms is induced by is induced by the
multiplication on B (E°A).

5. THE UNIVERSAL ENVELOPING ALGEBRA EXAMPLE.

Let A = U(L) with the Lie filtration as in Section 1, and notation (e.g. basis
for L) as in Section 1. So L has basis {z1,...,z,}, and

E°U(L) =S(L) = k[T, ..., T,
The overline on T; isn’t really necessary as this is an element of
F'UL)/FU(L)=(k® L)/k=L

but it will be convenient to remind us where we are working.
In the cohomology spectral sequence from Proposition 4.2 for A,

EPY = Extg?gjp(k, k) =E(ci,¢9,...,¢,)
where each ¢; is Ext"! and can be defined as an element of Homy(B1,(E°A), k) by
ci(T;) = 04

Notice that this F;-term is concentrated in degree ¢ = 0, so although there can
be a non-zero d;, there can’t be any higher differentials. Also observe that since
Extgry(k, k) is dual to Tor* P (k, k), we can make the same claim for the homology
spectral sequence.

We will calculate the differentials in the cohomology spectral sequence via the
following steps.

(1) Describe the E°%term, B,(S(L)).

(2) Give a basis for Tori(lL)(k, k) and TorigL)(k, k).

(3) Use those bases to calculate d : Ef j — Ej.

(4) Dualize to get d3° : E?° — E}°.

(5) Use the fact that d; is a derivation to deduce d; on the rest of EP°.
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Step 1: We indicate the first few stages of the bar complex. The top row gives the
homological degree.

0 1 2
ko +—— S(L) —— S(L) @k S(L) +——
0 +— ]
e(2)—(x)
e(x)ly] — vyl + [2]e(y) — [z]y]

Step 2: The equivalence classes in H; of the set of cycles
{[Z1],...,@,} is a basis for Tory ;.
The equivalence classes in Hs of the set of cycles
{[7:i|z;] — [Z;|%i] }ic; is & basis for Tory .
Step 3: We take a basis element for Tors », take a representing cycle [z;|7;] — [7;[7;]
in By(S(L)), and lift to an element of By(U(L)), namely [z;|x;] — [z;]z]

Note that this is in F2B,(A). Then we apply dy (the differential in B*(A))
do([wilzs] — [2j]@:]) = (@) [w;] — () |mi] — ([wizy] — [zj2]) + [wile(z;) — [2;]e(s)
=0— [zx; — zjo;) + 0 = [—[w;, 2] = [—Aijxk] = —/\f’j[xk].

We use the Einstein summation convention, so that in the expressions with
a subscript k£ and a superscript k, we sum over k.

In the expression with nested brackets, the outer bracket is notation from
the bar complex. The inner bracket is the Lie bracket. The )\,ﬁ ; are the
structure constants in L, that is the Lie bracket

(s, 5] = N
Step 4: We want to calcuate di(ci). We write
Xij = [lz] = [75]7].
dy(c))(Xiy) = e(d'(Xiy)) = al =X ) = =X

The collection {¢;c;}i<; forms a basis for Ext?g’(2 1 dual to the given basis for

Tori (ZL). We've just calculated
(2) dl(Cl) = Z —Ali,jCiCj = Z /\i,jcjci'

i<j 1<j

Step 5: We just remark that we can extend d; to the rest of the Fi-term since we

know it is a derivation and since the ¢; generate.

Finally we remark two things. The spectral sequence collapses at E, since EY? = 0
if ¢ # 0. Also, since the E, term is 0 for ¢ # 0, we get

Ext? (k, k) = E20 = EB°.

In other words Ext’ (k, k) is calculated from the homology of the complex E(cy, ..., ¢,)
with the given differential from equation (2).



