
Spectral Sequence Notes: Finiteness of homotopy groups

1. Finite type and the Serre Spectral Sequence

Definition 1.1. A space X is locally finite if Hi(X) is finitely generated for each
i.

This definition is motivated by the fact that if X is locally finite, then a CW
appoximation can be made that has finitely many cells in each dimension.

We’re interested in understanding how locally finite is preserved in fibration.
We’ll start by considering the path-loop fibration for a simply connected base
space X.

(1)

ΩX −−−→ PXyp

X

Assume that X is locally finite, and let i ≥ 2 be the first dimension in which X
has non-zero reduced homology. Then ΩX is i− 2 connected and

Hi−1(ΩX) = πi−1(ΩX) = πi(X) = Hi(X)

by using the Hurewicz theorem together with the shift in homotopy corresponding
to Ω. So Hi−1(ΩX) is finitely generated. We will do induction, and this serves
as our base space. [You might be worried about the case i − 1 = in which case
Hurewicz won’t necessarily give an isomorphism, but note that πi−1(ΩX) is abelian,
so that won’t be an issue.]

Now suppose Hk(ΩX) is finitely generated for k < n and consider the E2 term
of the Serre Spectral Sequence for our path loop fibration.

Z0

0

Hn(ΩX)

E2
2,n−1

E2
3,n−2

E2
4,n−3

E2
5,n−4

Hn+1(X)

n

Hn−1(ΩX)...

Hn−2(ΩX)

By induction (since tensor products of finitely generated groups are finitely gen-
erated) everything group in a spot below the line q = n is finitely generated. It
follows that E2

2,n−2E
3
3,n−3, . . . , E

n+1
n+1,0 are finitely generated since they are subquo-

tients of finitely generated groups.
1
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Now we note that the relevant E∞ groups are zero, so the differential dn+1 :
En+1

n+1,0 → En+1
0,n is an isomorphism. Thus En+1

0,n is finitely generated. Next note
there is a short exact sequence

0→ im(dnn,1)→ En
0,n → En+1

0,n → 0.

We just showed the right hand group is finitely generated, and since the source of
dnn,1 is finitely generated so is its image. It follows that En

0,n is finitely generated.
Similarly

0→ im(dn−1n−1,2)→ En−1
0,n → En

0,n → 0.

has finitely generated groups at the ends, and thus En−1
0,n is finitely generated.

We iterated this argument for dn−kn−k,k+1, finishing with d22,n−1 to show that

E2
0,n = Hn(ΩX)

is finitely generated.
We can mimic this argument by using the path-loop fibration (1) but now assum-

ing that ΩX is locally finite. If i is the first dimension in which ΩX has non-zero
reduced homology, then

Hi+1(X) = πi+1(X) = πi(ΩX) = Hi(ΩX).

So it follows that Hi+1(X) is finitely generated (and lower dimensional reduced
homology groups are 0).

Now suppose Hk(X) is finitely generated for k ≤ n, and consider the E2-term
of the Serre Spectral Sequence for the path-loop fibration (1). We’d like to show
Hn+1(X) is finitely generated.

Z0

0 n+ 1

Hn(ΩX)

Hn+1(X)

E2
n−1,1

E3
n−2,2

E4
n−3,3

E4
n−4,4

n

Hn−1...

Hn−2

Our argument is very similar. The relevant E∞ groups are 0. Since E∞n+1,0 =

En+2
n+1,0, we have dn+1

n+1,0 is an isomorphism. The target is finitely generated, so

En+2
n+1,0 is finitely generated.

Now if we assume by induction that Ek
n+1,0 is finitely generated for 2 < k ≤ n+2,

we examine the differential

Ek−1
n+1,0 → Ek−1

n+2−k,k−2
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Ek
n+1,0 is the kernel of that map, and the image is finitely generated as it is a

subgroup of a finitely generated group. So we have a short exact sequence

0→ Ek
n+1,0 → Ek−1

n+1,0 → im(dk−1n+1,0)→ 0.

Since the two groups on the end are finitely generated, so is the group in the
middle.

We conclude that E2
n+1,0 = Hn+1(X) is finitely generated. In other words, under

the original hypotheses (including X simply connected), X is finite type if and
only if ΩX is finitely generated.

These methods generalize.

Proposition 1.2. Suppose we have a fibration

(2)

F −−−→ Eyp

B
with F path connected and B simply connected. If two of the three spaces F,E,B
are finite type, so is the third.

Proof. (1) Suppose B,E are finite type. We proceed as in the first case above
when considering the path-loop fibration (1). The only difference between
this case and that one is that the fact that E is locally finite implies all
E∞p,q are fintely generated. Thus the differential

dn+1
n+1,0 : En+1

n+1,0 → En+1
0,n

has finitely generated cokernel and finitely generated image. So En+1
0,n is

finitely generated. The rest of the proof proceeds exactly as in the case
above where we are showing X finite type imples ΩX finite type.

(2) Suppose E,F are finite type. We proceed as in the second case above
considering the path-loop fibration (1). The only difference bewteen this
argument and that case is that since E is locally finite, so are all E∞p,q are
finitely generated. Thus the differential

dn+1
n+1,0 : En+1

n+1,0 → En+1
0,n

has a finitely generated kernel, establishing that En+2
n+1,0 is finitely generated.

The rest of the proof proceeds as in the case where we show ΩX finite type
implies X finite type.

(3) Suppose F,E finite type. Then each E2
p,q is finitely generated. So each E∞p,q

is finitely generated. Since Hn(E) is made from a finite series of extensions
involving E∞n−q,q, it follows that Hn(E) is finitely generated.

�

This result can be generalized much further.

Definition 1.3. A Serre class of abelian groups is a class of abelian groups C
satisfying

(1) For any short exact sequence

0→ A→ B → C → 0

the group B ∈ C if and only if A and C are both in C.
(2) A,B ∈ C implies A⊗ C ∈ C.
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Here are some useful example:

(1) finitely generated abelian group.
(2) finite abelian groups.
(3) torsion abelian groups.
(4) p-primary torsion abelian groups.
(5) p-local abelian groups.

Some non-examples include k-vector spaces.

Proposition 1.4. Suppose we have a fibration

(3)

F −−−→ Eyp

B
with F path connected and B simply connected. Let C be a Serre class of abelian
groups. If two of the three spaces F,E,B have all of their reduced homology groups
in C, so does the third.

Proof. The proof is really the same as that of Proposition 1.2. �

One can actually generalize this further by considering homology in a PID R,
and Serre classes of R-modules. One needs R to be a PID so that the Künneth
Theorem works in the expected way. This is useful, for example, when R is a field
to show that the “two out of three property” holds for homology with R coefficients
being finitely generated in each degree.

2. Qualtiative information about H∗(K(A, n)).

Corollary 2.1. K(Z, n) is finite type.

Proof. This is true for n = 1, 2 (S1 and CP∞). Assume it is true for K(Z, n).
Then consider the path loop fibration

K(Z, n) −−−→ PK(Z, n+ 1)yp

K(Z, n+ 1)

The fiber and the total space are finite type, so by Proposition 1.2 so is the base
(n ≥ 1, so K(Z, n+ 1) is simply connected). �

Corollary 2.2. K(Z/(l), n) is finite type.

Proof. For n ≥ 2, we consider the fibration

F −−−→ K(Z, n)yp

K(Z/(l), n)

where the map p is chosen so that on homotopy it induces the quotient map
Z → Z/(l). It follows, by examination of the long exact sequence of the fibration
that F is a K(Z, n).

We apply Proposition 1.2 where the fiber and total space are known to be finite
type by Corollary 2.1. We conclude K(Z/(l), n) is finite type for n ≥ 2. This
doesn’t work for n = 1 since then the base space is not simply connected.
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For n = 1 we consider the fibration

K(Z/(l), 1) −−−→ PK(Z/(l), 2)yp

K(Z/(l), 2)

The base and the total space are finite type and the base is simply connected, so
by Proposition 1.2, so is the fiber. �

We can do better than just finite type for K(Z/(l), n).

Corollary 2.3. Hi(K(Z/(l), n)) is a finite abelian group for each i.

Proof. We first need to prove this for K(Z/(l), 1), which is also the classifying
space BZ/(l). One can explicitly calculate the homology of this space by viewing
it as in infinite dimensional lens space. One gets

H̃i(K(Z/(l), 1)) =

{
0 i even
Z/(l) i odd

THere is also a cheap trick one can do that generalizes to other finite groups
(even if they aren’t abelian). Consider the universal cover of K(Z/(l), 1), call it
E and let p : E → K(Z/(l), 1) be the corresponding covering map. We’ll think
about the map

p∗ : H̃∗(E)→ H̃∗(K(Z/(l), 1).

All homotopy groups (and thus all reduced homology groups) of E are 0. So p∗
doesn’t look very promising. But there is also a map the other way. called the
transfer

τ : H̃∗(K(Z/(l), 1)→ H̃∗(E).

τ is not induced by a map on spaces, but it is induced by a map on singular chains.
If σ : ∆p → K(Z/(l), 1) is a singular simplex, then for each e ∈ p−1(σ(v0)) there is
a unique lift of σ to a map sending v0 to e.
τ is defined on chains by sending σ to the sum of these lifts. This gives a map

on homology.
This construction works for any finite covering space of course. The interestest-

ing thing about τ is that p∗ ◦ τ is multiplication by the order of the covering
space.

In this case, p∗ ◦ τ is multiplication by l. But it factors through 0, so multiplica-
tion by l is zero. We already know Hi(K(Z/(l), 1)) is finitely generated, but now
we know each generator has order dividing l. So the maximum size of the group
is the number of generators raised to the power l.

(This same argument tells you that if G is any finite group, then multiplication
by the order of G is zero on the reduced homology groups.)

So we’ve dealt with the base case. Now assume we know that each reduced
homology group of K(Z/(l), n− 1) is finite. Consider the fibration

K(Z/(l), n− 1) −−−→ PK(Z/(l), n)yp

K(Z/(l), n)
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We know that the fiber and the total space have each reduced homology group
finite. So applying Proposition 1.4 in the case that C is the class of finite abelian
groups, we learn the same thing about the base of the fibration. �

Corollary 2.4. (1) If A is finitely generated, then K(A, n) is finite type.
(2) If A is finite, then each H̃i(K(A, n)) is finite.

Proof. (1) A is a product of cyclic groups. So K(A, n) is a product of K(Ci, n)
for cyclic Ci. So its homology is determined by iterating the Künneth
Theorem. The tensor and torsion product of finitely generated groups are
also finitely generated.

(2) A is a product of finite cyclic groups. So K(A, n) is a product of K(Ci, n)
for finite cyclic Ci. The tensor and torsion product of finite groups are
finite.

�

Proposition 2.5. For n ≥ 1,

H∗(K(Z, n),Q) =

{
E(xn) n odd
Q[xn] n even

Proof. Since K(Z, 1) ' S1 and K(Z, 2) ' CP∞, we have the result for n = 1, 2.
We assume the result for n and use that to derive the result for n + 1. We’ll use
the Serre Spectral Sequence associated to the path-loop fibration

K(Z, n) −−−→ PK(Z, n+ 1)yp

K(Z, n+ 1)

Case 1: n odd. The E2-page looks like

Q

0

...

...

0

Q

0

p = 0

q = 0

q = n

0 · · · · · · · · · 0 Q

p = n+ 1

0

...

...

0

Q0 · · · · · · · · · 0

0
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Only the 0th row and the nth row can have non-zero entries by the assumption
about K(Z, n). The Hurewicz Theorem gives us the 0th row from p = 0 through
p = n + 1. Since the homology (and thus the cohomology) groups are finitely
generated and the base is simply connected,

Ep,q
2 = Hp(K(Z, n+ 1); Q)⊗Hq(K(Z, n); Q).

We write xn for the generator of Hn(K(Z, n); Q) and xn+1 for the generator of
Hn+1(K(Z, n + 1); Q). Thus the four copies of Q indicated in the picture have
generators 1⊗ 1, xn+1 ⊗ 1, 1⊗ xn, xn+1 ⊗ xn.

Because of the vanishing of all but two rows, E2 = E3 = · · · = En+1 and
En+2 = E∞. Because Ep,q

∞ = 0 unless p = q = 0, we have

dp,qn+1 : Ep,q
n+1

∼=−→ Ep+n+1,q−n
n+1

for q = n.
Then WLOG, choose xn+1 so that dn+1(1⊗ xn) = (xn+1 ⊗ 1). For n + 1 < p <

2n+ 2, we get

Hp(K(Z, n+ 1); Q) ∼= Ep,0
2
∼= Ep,0

n+1
∼= Ep−n−1,n

n+1 = 0.

For p = 2n + 2, we still have dn+1,n
n+1 is an isomorphism landing in E2n+2,0

n+1 =
H2n+2(K(Z, n+ 1); Q). But we also have (using that this is a spectral sequence of
algebras)

d(xn ⊗ xn+1) = d(xn ⊗ 1)(1⊗ xn+1) + (xn ⊗ 1)d(1⊗ xn+1) = 1⊗ x2n+1.

So H2n+2(K(Z, n+ 1); Q) ∼= Q with generator x2n+1.
If one assumes inductively thatH∗(K(Z, n+1); Q) ∼= Q[xn+1] through dimension

∗ = k(n + 1) then a similar argument tells us that Hp(K(Z, n + 1); Q) = 0 for

k(n+1) < p < (k+1)(n+1) and that d
k(n+1),n
n+1 is an isomorphism taking xkn+1⊗xn

to xk+1
n+1. So

H(k+1)(n+1)(K(Z, n+ 1); Q) ∼= Q generated by xk+1
n+1

Then by induction, H∗(K(Z, n+ 1); Q) is as claimed.
Case 1: n even. We think about E2-page using the same diagram above. But

this is a less complete description since there is a non-zero row at each q = kn.
We know H∗(K(Z, n+ 1); Q) for ∗ ≤ n+ 1 as before by the Hurewicz Theorem.

This tells us complete information about the columns p = 0 through p = n+ 1.
We also know that at locations (0, n) and (n + 1, 0), we have both E2 = En+1

as before, and En+2 = E∞. So dn+1 is an isomorphism between these locations, so
as before choose a generator xn+1 ∈ Hn+1(K(Z, n+ 1); Q) so that d0,nn+1(1⊗ xn) =
xn+1⊗1. With this notation, the non-zero groups in the p = 0 column are generated
by 1 ⊗ xkn and the non-zero groups in the p = n + 1 column are generated by
xn+1 ⊗ xn.

Using that dn+1 is a derivation on the En+1-page and that dn+1(xn+1 ⊗ 1) = 0,
we calculate

d(xn+1 ⊗ xkn) = k(xn+1 ⊗ xk−1n )

which is an isomorphism for k ≥ 1.
It follows that Ep,q

n+2 = 0 for p ≤ n + 1 (except at (0, 0)). We now want to ask
if Hk(K(Z, n + 1); Q) can be non-zero for k > n + 1. Suppose k is the smallest
interger above n+ 1 for which Hk(K(Z, n+ 1); Q) is not known to be zero. So in
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the E2-term, the p = 0, p = n+ 1 columns are non-zero, and the next column that
might be non-zero is p = k.

Of course all differentials leaving the (k, 0) spot are 0, so each Ek,0
r is a quotient

of Hk(K(Z, n+ 1); Q). Also, any differentials into the (k, 0) spot must come from
the p = n + 1 or p = 0 column. But we’ve already established that everything in
the p = n+1 column is hit by a differential, so it cannot also support a differential.
We’ve also established that nothing in the p = 0 is in the kernel of dn+1, so there
is nothing there to support a dk.

Thus all differentials into the (k, 0) spot are 0. So

0 = Ek,0
∞ = Ek,0

2 = Hk(K(Z, n+ 1); Q).

Thus H∗(K(Z, n+ 1); Q) is as claimed. �

Remark: We haven’t determined the integral homology, but if we combine
Proposition 2.5 with Corollary 2.1 (and the universal coefficient theorem when
appropriate) we see that in dimensions with zero rational homology, we get finite
homology and cohomology groups, and in dimensions with a copy of Q in the
rational cohomology, we get homology and cohomology groups that are a direct
sum of Z with some finite group.

3. Spheres

We will make repeated use of the following facts.

(1) Let X be CW, A an abelian group. Then Hn(X,A) = [X,K(A, n)].
(2) If X is n− 1-connected and A = πn(X) = Hn(X) then

Hom(A,A) = Hom(Hn(X), A) ∼= Hn(X;A) ∼= [X,K(A, n)]

and the map ιA : X → K(A, n) on the right hand side corresponding to
the identity of A on the left hand side induces an isomorphism in πn.

(3) Given any map f : X → Y , one can replace X with a homotopy equivalent
space X ′ and f with a corresponding map f ′ so that f ′ is a fibration.
The homotopy type of the fiber of f ′ is independent of how one does this
replacement.

These are the facts that allow one to imitate the universal covering space con-
struction to eliminate higher homotopy groups in the way that the universal cover
eliminates the fundamental group. Unfortunately, one doesn’t get covering spaces
doing this, just fibrations.

More precisely, let X be an n− 1-connected CW complex. Let A = πn(X). Use
the facts above to make a map X → K(A, n) which is an isomorphism on πn, and
replace X with a homotopy equivalent space to make this map a fibration. We
will continue to denote the replacement space by X. Then we get a fibration

(4)

F
i−−−→ Xyp

K(A, n)

where F is n-connected and i∗ is an isomorphism on πi for i > n. So F captures
all the homotopy groups of X above dimension n.
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We now consider odd dimensional spheres, S2n−1. We construct the fibration as
in (4) for S2n−1.

(5)

F2n
i−−−→ S2n−1yp

K(Z, 2n− 1)

Lemma 3.1. Hi(F2n) is finite for all i.

Proof. We will consider the homology Serre Spectral Sequence for the fibration (5).
Note that H2n−1 of the base is Z, the lower homology groups are 0 and the higher
homology groups are finite.

Note also that F2n is finite type by Propositon 1.2, and has zero homology below
dimension 2n. Assume inductively that Hi(F2n) is finite for i < m, and of course
we only need consider m ≥ 2n.

Hm(F2n) = E2
0,m

Note first that E2
p,q for q < m is finite except for (0, 0) and (2n − 1, 0). This is

because
E2

p,q = HpK(Z, 2n− 1)⊗HqF2n

and both groups are finitely generated, and at least one is finite for q < m except
in the two cases indicated.

We next note that E∞0,m = 0 because Hm(S2n−1) = 0 (we are using that m ≥ 2n

of course). So we examine the stages between E2
0,m and E∞0,m.

E3
0,m = cok(d22,m−1 : E2

2,m−1 → E2
0,m)

E4
0,m = cok(d33,m−2 : E3

3,m−2 → E3
0,m)

...

Em+2
0,m = cok(dm+1

m+1,0 : Em+1
m+1,0 → Em+1

0,m )

E∞0,m = Em+2
0,m = 0.

In each line, the source of the differential is a finite group - that is we’ve avoided our
trouble spot for dimensional reasons or by inductive hypothesis. So by inducting
back up the sequence,

Em+1
0,m , Em

0,m, . . . E
2
0,m

are finite groups. Thus Hm(F2n) is finite. �

Remark: In particular,

π2n(S2n−1) = π2n(F2n) = H2n(F2n)

is finite. This suggests something a little different happens for even spheres since
you already know π3(S

2) = Z.
We want to continue this process so we can know about the rest of the homotopy

groups of S2n−1. Define Fm inductively for m > 2n by

(6)

Fm
i−−−→ Fm−1yp

K(πm−1Fm−1,m− 1)



10

Here m − 1 ≥ 2n so we can get started. The map p is an isomorphism on πm−1.
By induction, Fm is m− 1-connected and i∗ is an isomorphism on πn, n ≥ m.

Lemma 3.2. For all m ≥ 2n, HiFm is finite for each i, and Fm is m−1 connected.

Proof. We induct. m = 2n is the base case, and that was Lemma 3.1.
Assume for m− 1 ≥ 2n. Then πm−1Fm−1 = Hm−1Fm−1 which is finite. The fact

that p is an isomorphism on πm−1 with the long exact sequence on homotopy tells
us that Fm is m− 1-connected.

By induction assumption, each homology group of Fm−1 is finite. By Corol-
lary 2.4 each homology group of K(πm−1Fm−1,m − 1) is finite. So by Proposi-
tion 1.4 applied to the class of finite abelian groups, each homology group of the
fiber is finite. �

Theorem 3.3. πi(S
2n−1) is finite for all i > 2n− 1.

Proof. Let i > 2n − 1. By iterating the maps i from (5) and (6), πiFi = πiS
2n−1.

By Lemma 3.2, πiFi = HiFi and is finite. �

Next we consider S2n. We know the situation is more interesting here because
the Whitehead square of the identity gives an element of Hopf invariant 2 (and
thus infinite order) in π4n−1S

2n. What we want to show is that apart from the
groups generated by this element and the identity, the other homotopy of S2n is
finite.

Here is a sketch of how to deal with this case. We use the same notation, Fm

for the “covers” of S2n, so that Fm,m > 2n is m− 1 connected and πiFm = πiS
2n

for i ≥ m.

(1) Note that all Fm are locally finite by iterating Proposition 1.2.
(2) Do the SSS for rational homology of F2n+1 → S2n → K(Z, 2n) to conclude

that

H̃∗(F2n+1; Q) =

{
Q ∗ = 4n− 1
0 else

(3) The two facts above imply HiF2n+1 is finite except in dimensions 0 and
4n− 1 where there is a finitely generated group with a single infinite cyclic
summand.

(4) Use this and induction up the tower with the SSS to conclude that each
homology group of Fi is finite except in dimensions 0 and 4n − 1 where
there is a finitely generated group with a single infinite cyclic summand,
for 2n+ 1 ≤ i ≤ 4n− 1.

(5) Use this to conclude that HiFi = πiFi = πiS
2n is finite for 2n + 1 ≤ i ≤

4n − 2 and that π4n−1F4n−1 = π4n−1S
2n is infinite cyclic direct sum some

finite group.
(6) Use another SSS argument to conclude that each reduced homology group

of F4n is finite.
(7) Conclude that each reduced homology group of Fm is finite for m ≥ 4n and

thus πmS
2n = πmFm = HmFm is finite.

There is another much more elegant way to deal with the even dimensional
spheres, but it involves some more technology (not spectral sequences). Here is an
outline of the more elegant approach.
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(1) The James construction on a pointed space (X, ∗) is the “free monoid” on
X. That is

JX = (X tX ×X tX ×X ×X t · · · )/ ∼
where (x1, . . . , xk) ∼ (x1, . . . , xi, ∗, xi+1, . . . , xk). So the relation allows one
to compare sequences of different lengths by inserting (or deleting) base-
points. This is a monoid under concatenation, with unit (∗).

(2) There is a map JX → ΩΣX where we use the reduced suspension and
Moore loops. This is a map of monoids. ∗ goes to the constant loop of
length 0. x goes to the loop t 7→ (t, x).

(3) This map is a weak equivalence and when X is a CW complex, this map
is a homotopy equivalence.

(4) One can prove that

ΣJX =
∞∨
i=1

Σ(X∧i)

which implies the same for ΣΩΣX when X is a CW complex.
(5) Using this decomposition, we can make a map known as the Hopf map

ΣΩS2n = ΣJS2n−1 → ΣS4n−2 = S4n−1

which is just projection out to the sphere Σ(S2n−1 ∧ S2n−1).
(6) If we take the adjoint of this map we get a map

ΩS2n h−→ ΩS4n−1.

This induces isomorphism on Hi when i is a multiple of 4n− 2. (To prove
this one has to calculate both cohomology rings, and note that we get an
isomorphism in dimension 4n− 2).

(7) Let F be the homotopy fiber of that map and look at the fibration

F −−−→ ΩS2nyh

ΩS4n−1.
(8) The fact that h∗ is onto in homology tells us that none of the classes in

Er
p,0 support differentials, and one can use this fact to show that the SSS

collapses at E2 and that H∗(F ) ∼= H∗S
2n−1. Since F is simply connected,

this is enough to see that there is a map S2n−1 → F which is a weak
equivalence.

(9) This means there is a long exact sequence in homotopy groups associated
to S2n−1 → ΩS2n → ΩS4n−1.

Since we know π∗S
2n−1 is finite except in dimension 2n−1, and π∗ΩS

4n−1

is finite except in dimension 4n− 2, we see that π∗ΩS
2n is finite except in

dimensions 2n − 1 and 4n − 2, and in each of those dimensions it is the
direct sum of Z with a finite group.

(10) To get the same results for π∗S
2n, shift everything up one dimension.


