(1) Let (X, A) be a pair of spaces. Filter $C^*(X)$ by

$$F^{0}C^{*}(X) = \ker(C^{*}(X) \to 0)$$

$$F^{1}C^{*}(X) = \ker(C^{*}(X) \to C^{*}(A))$$

$$F^{2}C^{*}(X) = 0.$$

Describe the remaining $F^i C^*(X)$, and give a complete description of the spectral sequence $(E_r \text{ and } d_r)$ for $r \ge 1$, including E_{∞} .

(2) Let X be a CW complex. Define

$$F^iC^*(X) = \ker(C^*(X) \to C^*(X^{(i-1)})).$$

Give a complete description of the spectral sequence $(E_r^{*,*}, d_r^{*,*})$ starting at r = 1.

- (3) Let $s \ge 1$ be some fixed integer. Give a chain complex and a filtration so that in the associated spectral sequence, $d^r = 0$ except when r = s in which case $d^s \ne 0$.
- (4) Use the homology Serre Spectral Sequence to calculate $H_*(\Omega S^n)$ for $n \geq 2$.
- (5) Use the cohomology Serre Spectral Sequence to calculate $H^*(\Omega S^n)$ for $n \ge 2$. You can use the result of the previous excercise to identify the groups, but I want you to give the cup product structure also.
- (6) Use the Serre Spectral sequence to calculate $H^*(\Omega(S^3 \vee S^3))$.
- (7) Let n be odd. Calculate $H^*(\Omega^k S^n; \mathbf{Q})$ for k < n using induction on k. (You'll want to iterate the cohomology Serre Spectral Sequence).