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Abstract. Cyclic population dynamics are of central interest in ecology. Reliably
identifying and quantifying the cyclicity of populations is valuable for the understanding of
regulatory mechanisms and their variability across spatiotemporal scales. Cyclicity can be
detected using periodogram analysis of time series. The statistical significance of periodogram
peaks is commonly evaluated against the null hypothesis of uncorrelated fluctuations, also
known as white noise. Here, we show that this null hypothesis is inadequate for cycle detection
in ecosystems with non-negligible correlation times. As an alternative null hypothesis we
propose the so-called Ornstein-Uhlenbeck state-space (OUSS) model, which generalizes white
noise to allow for temporal correlations. We justify its use on mechanistic principles and
demonstrate its advantages using numerical simulations of simple population models. We
show that merely contrasting cyclicity against white noise greatly increases the false cycle
detection rate and can lead to wrong conclusions even for simple systems. A comparative
statistical analysis of the Global Population Dynamics Database using both null hypotheses
suggests that a significant number of populations might have been misinterpreted as cyclic in
the past. Our proposed methods for cycle detection are available as an R package (peacots).

Key words: fluctuations; null hypothesis; Ornstein-Uhlenbeck process; population cycles; state-space
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INTRODUCTION

The detection of cyclicity has been a long-standing
problem in disciplines ranging from astronomy (Brault
and White 1971, Scargle 1982) to geophysics (Båth 2012)
and ecology (Bulmer 1974, Kendall et al. 1998). Reliably
quantifying the cyclicity of populations is a valuable tool
for the identification and understanding of regulatory
mechanisms and stressors, as well as their variability
across spatiotemporal scales. These are particularly
important issues in conservation biology (Murray et
al. 2008, Salvidio 2009) and climate change research
(Ims et al. 2008, Kausrud et al. 2008).
The cyclicity of a stochastic process is commonly

identified with the existence of a clear global maximum
in its power spectrum, a so-called spectral peak, at a
nonzero frequency. Spectral peaks can be detected in the
periodogram of a time series, which is a stochastic
estimator for the true power spectrum of the unknown
generating process. Periodograms are typically calculat-
ed using the discrete Fourier transform (Platt and
Denman 1975). The statistical significance, or false
alarm probability (FAP), of a periodogram peak is the
probability of the peak appearing by mere chance,

rather than because of true cyclicity, given some
noncyclic null hypothesis for the underlying process.
More precisely, it is the probability that the maximum of
a periodogram produced under the null hypothesis is at
least as strong as the observed peak. The null hypothesis
is typically chosen to be uncorrelated (white) noise
(Scargle 1982, Horne and Baliunas 1986, Kendall et al.
1998, Glynn et al. 2006, Murray et al. 2008), which has a
flat power spectrum (Fig. 1a). With this null hypothesis,
the FAP is given by

PWN ¼ 1" ½1" e"sp=s$N ð1Þ

where s is the power of the white noise process (WN) at
any frequency, sp is the power of the periodogram peak,
and N is the number of considered frequencies in the
periodogram (Scargle 1982, Chatfield 1996). Periodo-
gram peaks are accepted as indicators of cyclicity if PWN

falls below a fixed significance level, typically 0.05. The
white noise power s can be estimated from the sample
variance (Horne and Baliunas 1986), which is equivalent
to using the average periodogram power.
However, taking uncorrelated noise as a null hypoth-

esis for ecological fluctuations is only sensible if their
temporal correlation is much shorter than the time
intervals between observations, an idealized case some-
times referred to as perfect compensation (Royama
1977, Berryman and Turchin 2001). Ecosystems can
easily exhibit comparably long correlation times, even if
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they merely undergo random fluctuations about a stable
equilibrium. These correlations can, for example, result
from slow reactions of the abiotic environment, slow
return times to equilibria after disturbance, or large
generation times of the focal species (Steele 1985, Ricker
1997, Vasseur and Yodzis 2004, Myers and Cory 2013).
In the periodogram, these long-term correlations are
typically reflected in an increased power at lower
frequencies, as has been observed in several ecological
and environmental variables (Gutierrez and Almirall
1989, Sugihara 1995, Halley 1996). In these cases,
periodogram peaks are more likely to appear at lower
frequencies and to dominate the rest of the periodogram
to an extent very unlikely to occur with uncorrelated
noise. Hence, ruling out white noise as the source of a
periodogram peak cannot be considered a strong
argument for true cyclicity.

AN ALTERNATIVE NULL HYPOTHESIS

As an alternative null hypothesis of ecological
dynamics, we propose the so-called one-dimensional
Ornstein-Uhlenbeck (OU) process (Uhlenbeck and
Ornstein 1930, Gardiner 1985). The OU process is
defined as a Brownian motion (or random walk) in a
quadratic potential well and offers a simple description
of a stochastic system subject to linear stabilizing forces.
It typically appears as a weak-noise approximation in
stochastic population models exhibiting a stable equi-
librium in the deterministic limit (Pineda-Krch et al.
2007, Baxendale and Greenwood 2011). Formally, the
OU process is defined by a stochastic differential
equation

dX

dt
¼ kðl# XÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
2kr2

p
W ð2Þ

where l is the deterministic equilibrium and k is the

deterministic resilience of the system. The term W
denotes Gaussian white noise, resulting in fluctuations
of X about its equilibrium with a standard deviation r.

The temporal correlation of the OU process decays
exponentially at a rate equal to the resilience of the
system. Its power at frequency f is given by

Sð f Þ ¼ Sok2

ð2pf Þ2 þ k2
ð3Þ

(where So¼ 2r2/k is the power at zero frequency), which
decays quadratically as f ! ‘ (Fig. 1b). When the
resilience of the system is high compared to the
considered frequencies (k & f ) or, equivalently, when
the system’s correlation time is much shorter than the
considered time scales (1/k ' 1/f ), Eq. 3 becomes
identical to the white noise spectrum. This is because the
OU process becomes Gaussian white noise in the limit of
instantaneously decaying fluctuations (k ! ‘). We
argue that the OU process is a more suitable null
hypothesis for noncyclic ecological dynamics because it
can account for the temporal correlations between
fluctuations about an equilibrium. Analogous argu-
ments have been made for the use of higher-order
autoregressive null models for the detection of density
dependence in ecological time series (Berryman and
Turchin 2001).

In practice, the power spectrum of an ecological
variable is estimated from the periodogram of a finite
time series. Furthermore, measurements inevitably
introduce errors that can be hard to quantify and that
compromise the suitability of models such as the OU
process for describing the data. In order to accommo-
date the possibility of random measurement errors, we
extend the OU process by uncorrelated errors that are
added to the OU process X(t) at each sample point.

FIG. 1. Periodograms (power over oscillation frequency; continuous curves) of time series generated by (a) Gaussian white
noise and (b) an Ornstein-Uhlenbeck state-space (OUSS) process. The resilience of the OUSS process (k, indicated on the frequency
axis), determines the typical frequencies below which the power spectrum increases (Eq. 4). OUSS measurement errors were
comparable to natural fluctuations (e ¼ r), resulting in a long-tailed periodogram. The dashed curves represent the theoretical
expectation.
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Hence, under the null hypothesis, a time series taken at
times t1, . . . , tM is assumed to be given by the values
X(t1) þ Y1, . . . , X(tM) þ YM, where Y1, . . . , YM are
uncorrelated random variables with zero mean and
variance e2. Note that the exact distribution of the Yk is
irrelevant for the purposes of periodogram analysis.
This model is called the OU state-space (OUSS) model
and has recently been proposed by Dennis and Ponciano
(2014) as a model for population time series.
For a long regular time series, the obtained periodo-

gram is asymptotically exponentially distributed, inde-
pendently at each frequency (Brillinger 2001). If d is the
time step, the expected periodogram value at frequency f
¼ mfo (where fo ¼ 1/(Md) and m ¼ 0, . . . , M/2) is
asymptotically given by the function

sð f Þ ¼ soð1# qÞ2

1þ q2 # 2qcosð2pf dÞ þ de2 ð4Þ

that we refer to as the OUSS power spectrum. Here, q¼
e#kd is the Pearson correlation between two consecutive
measurements and

so ¼ Sod
kð1þ qÞ
2ð1# qÞ ð5Þ

is the power at zero frequency originating in the OU
process. The last term in Eq. 4 is the additional power in
the time series due to measurement errors. We refer to
Appendix A for more details. If the time step d is very
small compared to the considered period 1/f and the
correlation time 1/k, then s( f ) becomes equal to S( f ).
On the other hand, if d is much greater than 1/k (i.e.,
consecutive measurements are uncorrelated), then s( f )
becomes flat and equal to a white-noise-like spectrum
d(r2 þ e2).
We define the statistical significance of the periodo-

gram peak (power sp at frequency fp), denoted by
POUSS, as the probability that the periodogram maxi-
mum (power ŝp at frequency f̂p) of any OUSS time series
with the same parameters turns out to satisfy

ŝ2p

s̄ð f̂pÞ
(

s2p
s̄ð fpÞ

: ð6Þ

Here, s̄ is the expected periodogram power and is
equal to Eq. 4 only in the infinite time-series limit (the
correction for finite time series is given in Appendix A).
In the simpler case of white noise, condition 6 reduces to
the standard condition ŝp ( sp. In the general OUSS
case, the modified condition accounts for the noncon-
stant power spectrum, which results in a lower
likelihood of spurious peaks appearing at high frequen-
cies. Consequently, periodogram peaks observed at high
frequencies will be statistically more significant.
The parameters so, k, and e can be estimated from the

periodogram through maximum-likelihood fitting. The
statistical significance of the periodogram peak can then
be calculated using numerical Bernoulli experiments, in

which random periodograms of the OUSS model are
emulated using exponentially distributed numbers with
mean equal to s̄. Details are given in Appendix B. The
performance of this approach is discussed in Appendix
C.

THEORETICAL COMPARISON

To explore the differences between the two cyclicity
tests, i.e., using the OUSS or WN as a null hypothesis,
we used numerical simulations of an OUSS model with a
cyclic component of varying amplitude. The OUSS
model provides a generic description of fluctuating
ecological variables stabilized by linear forces and
subject to measurement error. More precisely, we
considered the OU process in Eq. 2 and chose a
periodically oscillating equilibrium l of the form

lðtÞ ¼ Asinð2pt=TÞ ð7Þ

where A and T are the oscillation amplitude and period,
respectively. Such an oscillating equilibrium can origi-
nate, for example, in seasonal forcing. In the determin-
istic limit, X oscillates with an amplitude a, which is
generally smaller than A due to the finite resilience k. In
the presence of noise, X fluctuates around its determin-
istic trajectory with an approximate variance r2 and
correlation time 1/k. Time series obtained from this
process were superimposed by Gaussian error terms of
variance e2, yielding an OUSS process superimposed on
a cyclic signal. We considered the standard deviation r
as a reference scale of natural fluctuations to which we
related the other two parameters a and e. For example,
if a ' r, then X is practically noncyclic, and if e & a,
then measurement error completely overshadows the
cyclic signal.
We generated a large number of time series of the

cyclic OUSS model, while choosing the parameters
within a wide plausible range. We examined cycle
detection rates using both null hypotheses at a nominal
significance threshold of 0.05, for varying a/r and e/r.
We considered time series of two different qualities (200
points across 25 correlation times or 40 points across 15
correlation times). Technical details are given in
Appendix D.
The results, summarized in Fig. 2, allow for some key

observations: For low-quality time series, both methods
have similar cycle detection rates in the presence of
cycles (a .; r), reaching over 80% when cycles dominate
stochastic fluctuations (a .; 2r), even in the presence of
strong measurement error (Fig. 2a, c, e). In the absence
of cycles (a ' r), the OUSS test results in far fewer
Type I errors (;5%) than the WN test (;23%). For
high-quality time series, the differences between the two
tests becomes much more apparent. While the OUSS
test becomes better at distinguishing between the
presence or absence of cycles (;5% detection rate for
a ¼ 0, 98% for a ¼ 2r; Fig. 2d, f ), the WN test has a
cycle detection rate of over 79%, even in the complete
absence of cycles (Fig. 2b, f ). The decreased specificity
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of the WN test with superior time series highlights the
pitfalls associated with such a test and reveals the
fundamental nature of its flaws. A further, unsurprising
observation is that measurement errors tend to reduce
the cycle detection rate, albeit not significantly and less
so for higher-quality time series (Fig. 2b, d).

AN EXAMPLE ON POPULATION MODELS

To further illustrate our argument, we compared the
OUSS and WN tests for time series generated by two
simple population models. Details are given in Appendix
E. The first model corresponds to a noncyclic density-

regulated population, exhibiting a stable equilibrium
disturbed by environmental noise. More precisely, we
considered the stochastic logistic growth model

dN

dt
¼ rN 1# N

K

" #
þ N

K

ffiffiffiffiffiffiffiffiffiffi
2rr2

p
W ð8Þ

with carrying capacity K and intrinsic growth rate r. The
rightmost term in Eq. 8 is Gaussian white noise,
corresponding to environmental and demographic sto-
chasticity. The noise amplitude scales linearly with
population size. For weak noise, the population density
N fluctuates about its equilibrium value K approximate-

FIG. 2. (a–d) Cycle detection rates using (a, b) the white noise (WN) null hypothesis as well as (c, d) the OUSS null hypothesis
at a significance threshold of 0.05, for varying cycle amplitudes a and measurement error amplitudes e. Lighter shades correspond
to higher cycle detection rates. (e, f ) Cycle detection rates for varying a and averaged over all e. In each plot, the far-left region (a'
r) corresponds to the noncyclic limit. Time series were generated using an OUSS model with periodic equilibrium. Technical details
are given in Appendix D.
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ly as an OU process with variance r2 and correlation
time 1/r. To each time-series point, we added a random
Gaussian error term of variance e2, thus obtaining a
logistic growth state space (LGSS) model.
Simulations and periodogram analysis of the model

demonstrated that generated time series can easily be
falsely identified as cyclic by the WN test, verifying our
previous conclusions. Fig. 3a, b exemplifies this by
showing a generated time series and its corresponding
periodogram. The latter is clearly not generated by white
noise, and testing the observed periodogram peak
against white noise would falsely identify the time series
as cyclic (PWN ’ 0.014). In contrast, the periodogram
and its peak seem much more likely to be generated by
an OUSS process (POUSS . 0.3).
We examined a large number of time series of the

noncyclic LGSS model, while randomly choosing r/K
and e/r within a wide plausible range. We found that
20.8% of the peaks had a significance PWN , 0.05, while
only 4.5% had a significance POUSS , 0.05. This
demonstrates that even for very simple population
dynamics, using WN as a null hypothesis can lead to a
false cycle detection rate that is much higher than the
chosen significance level. In contrast, a comparison of
time series to the OUSS process results in a much more
frequent recognition of noncyclic correlated fluctua-
tions.
We then modified the logistic growth model to

describe a cyclic population driven by the periodic
variation of its carrying capacity. More precisely, we
considered the stochastic model

dN

dt
¼ rN 1# N

K þ Asinð2pt=TÞ

" #
þ N

K

ffiffiffiffiffiffiffiffiffiffi
2rr2

p
W ð9Þ

where A and T are the oscillation amplitude and
oscillation period of the carrying capacity, respectively.
In the deterministic limit and for small amplitudes (A '
K ), N oscillates about its carrying capacity with a
decreased amplitude a. Due to the noise term in Eq. 9,
the population cycles are superimposed by random but
correlated fluctuations, similarly to the cyclic OUSS
process. Finally, we added random error terms to the
time series, as described for the previous two state-space
models.
Similar to the noncyclic model, we examined the cycle

detection rate for a large number of random time series
of the cyclic LGSS model. Sensitivities were high and
comparable for both tests: 66.4% and 70.8% of the cases
were detected as cyclic using the WN and OUSS test,
respectively (64.8% of the cycles were detected by both
tests). This shows that the greater generality of the
OUSS process does not necessarily result in a reduction
of sensitivity. In fact, the detection rate of the OUSS test
increases for high-frequency cycles, because spurious
periodogram peaks have a decreased likelihood of
appearing at higher frequencies in an OUSS process
(Fig. 4).

CYCLES IN NATURAL POPULATIONS

Kendall et al. (1998) tested nearly 700 time series in
the Global Population Dynamics Database (GPDD) for
cyclicity against the null hypothesis of white noise,
concluding that approximately 29% of the examined
time series were cyclic (database accessible online).5 In
analogy to their work, we tested more than 1700 time
series from the GPDD for cyclicity against both white
noise as well as the more general OUSS process. For
consistency with Kendall et al. (1998), time series were
detrended for the WN test to suppress low-frequency
modes. For the OUSS test, time series were not
detrended because (1) the OUSS model is constructed
to describe the increased power at low frequencies and
(2) detrending time series generated by an OUSS process
will not yield an OUSS process anymore (but see
Discussion for a proposed alternative to detrending).
Methodological details are given in Appendix F. Our
source code is provided in Supplement 1.
We found that 28.9% of the observed periodogram

peaks had a significance PWN , 0.05, in line with
Kendall et al.’s (1998) findings. On the other hand, the
OUSS test only classified 17.6% of cases as cyclic. This
suggests that the number of cyclic populations might
have been greatly overestimated by previous studies (by
up to 64%), with many of the populations that were
interpreted as cyclic merely undergoing correlated
fluctuations about their equilibria. Fig. 5a shows the
joint distribution of PWN and POUSS across all examined
time series. As can be seen, the two methods agree well
for periodogram peaks away from the low-frequency
region, as revealed by the nearly diagonal distribution of
PWN and POUSS for these cases. In contrast, the two tests
differ significantly for time series whose periodograms
peak at low frequencies. An example is given by Fig. 6
for a raccoon population time series, whose periodo-
gram peak is much better explained by the OUSS model
than by white noise (POUSS . 0.5, PWN , 0.05).

DISCUSSION

The described estimator for the false alarm probabil-
ity (FAP) is only accurate in the ideal case of regular and
infinitely long time series, with a priori known param-
eters, so, k, and e of the hypothesized OUSS process. For
realistic data sets, none of these assumptions are met,
and hence the proposed significance test is only an
approximate one. In fact, for low-quality time series, we
observed a significant overestimation of the FAP at
values below 0.1. We corrected this bias by transforming
the estimated FAPs with a conversion table generated
using Monte Carlo simulations. Details are given in
Appendix C. We note that the statistics of the
maximum-likelihood estimator for so, k, and e, as well
as the FAP estimator, are not completely understood.
These issues also exist for the simpler null hypothesis of

5 http://www3.imperial.ac.uk/cpb/databases/gpdd
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white noise (Schwarzenberg-Czerny 1996, Frescura et al.
2008, Süveges 2012).
An evaluation of the cyclicity of time series is often

complicated by the presence of a dominating low-
frequency maximum (LFM) that masks lower, but
potentially interesting peaks. LFMs can arise through
long correlation times (as emphasized in this study), but
can also result from long-term trends, for example due
to environmental changes such as climate change
(Kausrud et al. 2008). By construction, both the WN
and OUSS tests only evaluate the significance of the
global periodogram maximum. For the WN test, time
series are typically detrended in order to extract the
stationary part of the underlying process (Kendall et al.
1998, Clarke et al. 2009). However, detrending can
introduce spurious low-frequency periodicities (Hatana-
ka and Howrey 1969, Nelson and Kang 1981), and the
interpretation of a rejection of the OUSS null hypothesis
based on a detrended time series is unclear because
detrending does not preserve the OUSS structure.
To avoid an overestimation of the OUSS power due

to suspected long-term trends and to evaluate the

significance of periodogram peaks masked by an LFM
(if the latter is suspected of resulting from long-term
trends), we suggest ignoring periodogram frequencies
within the LFM. Such ‘‘low-frequency trimming’’ is
compatible with an OUSS test, because both the OUSS
parameters as well as the FAP can be estimated from
any particular subset of available frequencies. Care
should be taken, however, with the interpretation of
such a test. Rejecting the OUSS null hypothesis based
on a low-frequency trimmed periodogram only means
that it is unlikely that an OUSS process (with the
estimated parameters) could have generated such an
extreme peak within the trimmed frequency band. Fig. 7
shows an example time series of the Canadian lynx,
where low-frequency trimming is sensible. The charac-
teristic 10-year cycle (Elton and Nicholson 1942) is
masked by an LFM, which can be avoided by ignoring
all frequencies below 1/(20 years). An indiscriminate re-
evaluation of the GPDD using the same low-frequency
trimming for the OUSS test identified 21.9% of time
series as cyclic, an increase of about 24% over the simple
OUSS test (Fig. 5b).

FIG. 3. (a) Sample time series and (b) corresponding periodogram of the noncyclic population model in Eq. 8, where N
represents population density and K represents carrying capacity. The dashed curves in (b) show the estimated WN and OUSS
power spectra. The observed peak in (b), fp ’ 0.16, has a statistical significance PWN ’ 0.014 against the null hypothesis of WN,
and POUSS ’ 0.32 against the null hypothesis of an OUSS process. The time series spans 100 points, with r/K¼ 0.2 and e/r¼ 0.5.

FIG. 4. (a) Sample time series and (b) corresponding periodogram of the cyclic population model (Eq. 9). The dashed curves in
(b) show the estimated WN and OUSS power spectra (linear scale). The periodogram peak in (b) has statistical significances PWN ’
0.003 and POUSS ’ 0.0004 against the null hypothesis of an OUSS process. The time series spans 100 points, with r/K¼ 0.2, and a/
r¼ 1 and e/r¼ 0.5.
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FIG. 5. Scatterplot of the statistical significances of periodogram peaks (P) in time series analyzed from the GPDD, using the
OUSS test (x-axis) and the WN test (y-axis). (a) The OUSS test was applied to the original time series. Black triangles denote time
series for which the periodogram peak is located within the lowest three available frequencies; gray circles denote the remaining
time series. Point sizes are proportional to the length of the time series. (b) The OUSS test was applied to the low-frequency
trimmed time series; threshold 1/(20 yr). Technical details are given in Appendix F.

FIG. 6. (a) Time series and (b) corresponding periodogram for the North American raccoon (Procyon lotor) by Hudson Bay
Company (Poland 1892). The dashed curves in (b) show the fitted WN and OUSS power spectra. The peak in (b), fp ’ 1/(33 yr),
has a statistical significance PWN ’ 0.034 against the null hypothesis of white noise, and POUSS ’ 0.59 against the null hypothesis of
an OUSS process. (c) Log-transformed time series and (d) corresponding periodogram, respectively, taken from the Global
Population Dynamics Database (GPDD), entry 9711.
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We emphasize that our goal was not a thorough test
of the cyclicity of all populations in the GPDD, but
rather to demonstrate the importance of a suitable null
hypothesis using realistic data. Expert knowledge might
be required for appropriate data preprocessing and
interpretation in individual cases. For example, frequen-
cy trimming should only be used on a case-by-case basis,
since it is always associated with a loss of information on
the structure of the underlying power spectrum.
Furthermore, some population sizes might be best
described by an OUSS process on a logarithmic scale,
rather than a linear scale (see, e.g., Fig. 7; Dennis and
Ponciano 2014). Repeating the GPDD analysis using
log-transformed data identified even more populations
as OUSS processes (10.0% or 17.3% classified as cyclic
without or with frequency trimming, respectively).
On more general lines, time series can contain several

putative cyclic components of interest, emerging from
multiple oscillatory mechanisms (Bjørnstad and Grenfell
2001, Hammer 2007, Elderd et al. 2013). While
secondary peaks might not dominate the observed
dynamics, they can reveal important information on
less obvious processes. By construction, both the WN
and the OUSS test cannot evaluate the statistical
significance of secondary periodogram peaks (i.e., local,
but not global maxima). We suggest evaluating such
peaks based on the ratio of their power to the expected
periodogram power of the OUSS process at that
frequency, i.e., sp/s̄( fp). This roughly corresponds to a
comparison of the peak power to the average power of
nearby frequencies. The ‘‘local P value’’ of a secondary
peak would then be the probability that a periodogram
generated by the fitted OUSS process would have a
power-to-expectation ratio at least as high as sp/s̄( fp), at
any frequency. Asymptotically (i.e., for long regular
time series), this probability is given by Eq. 1 after
replacing s with s̄( fp). We have implemented all of the
proposed statistical methods as an R (R Core Team
2014) package (peacots; periodogram peaks in correlat-

ed time series; package available online).6 The package
can calculate the periodogram of a time series,
maximum-likelihood fit the OUSS null model to the
periodogram, and calculate the statistical significance of
the periodogram maximum. The package also includes
options for low-frequency trimming, as well as calculat-
ing the local statistical significance of secondary
periodogram peaks. Example code making use of
peacots is available in Supplement 3. A thorough usage
manual is included in the package distribution.

CONCLUSIONS

Correctly assessing the cyclicity of populations is
essential if we want to understand the effects of
environmental gradients and climate change on popula-
tion dynamics (Kendall et al. 1998, Murray et al. 2008,
Salvidio 2009). This involves the use of appropriate
statistical tools for the evaluation of putative spectral
peaks that take into account important features of the
focal ecosystem, such as correlated fluctuations (Vasseur
and Yodzis 2004). To address the latter, we have
demonstrated the superiority of the Ornstein-Uhlenbeck
state-space model as a null hypothesis for measured
ecological fluctuations over the conventionally used
white noise. Our basic statistical analysis of the Global
Population Dynamics Database showed that the differ-
ences implied for cycle detection can be of practical
importance.

While we have focused on cycle detection using
periodogram analysis, we expect our results to be
generalizable to other similar statistical tests (such as
correlogram analysis) that use white noise as a null
hypothesis. On these grounds, we advocate a corre-
sponding modification of the statistical methods applied
in future studies of ecological cycles, in particular for
systems with long correlation times. To facilitate this

FIG. 7. (a) Time series and (b) corresponding periodogram for the Canadian lynx (Lynx canadensis) by Ontario Trappers
Association (Novak et al. 1987). The dashed curve in (b) shows the maximum-likelihood fitted OUSS power spectrum after low-
frequency trimming at threshold 1/(20 yr). The peak in (b), fp ’ 1/(9 yr), has a statistical significance POUSS ’ 0.00014 against the
null hypothesis of an OUSS process. Taken from the GPDD, entry 407.

6 http://cran.r-project.org/web/packages/peacots
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advancement, we provide the statistical methods as an
easy-to-use R package.
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Süveges, M. 2012. False Alarm Probability based on bootstrap
and extreme-value methods for periodogram peaks. Page 16
in ADA7-Seventh Conference on Astronomical Data Anal-
ysis. Volume 1. Cargése, Corsica, France.
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A Periodogram of the OUSS model

Let z1, .., zM be a real time series generated by a stationary OUSS model and measured at time
intervals �. Without loss of generality, we shall assume that the process mean is zero. Our starting
point is the following definition of the periodogram
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where f

o

= 1/(M�) and m = 0, ..,M/2. We are interested in the expected value s = E {bs},
asymptotically for large M . Taking the expectation of Eq. (A.1) yields
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denotes the Kronecker delta (Gillespie, 1992). Hence Eq. (A.2)
can be written as
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where ⇢ = e

���. After a few algebraic manipulations one can write Eq. (A.3) as
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where we abbreviated
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Note that s
o

is the expected periodogram power at zero frequency in the limit M ! 1, introduced
in Eq. (5) of the main article. In that limit, Eq. (A.4) can be simplified and one obtains the
asymptotic expression (Box et al., 2013, Eq. (3.2.15))
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If additionally �� ⌧ 1 and f� ⌧ 1, and assuming "

2
/�

2 2 O(1), one retrieves the power spectrum
of the classical OU process,
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B Periodogram analysis

Periodograms were calculated using the Discrete Fourier Transform for the simulations and the
Lomb-Scargle periodogram (Lomb, 1976) for the GPDD. Periodogram powers were calculated at
frequencies f

o

, . . . , f

o

(M/2� 1), where M is the length of the time series and f

o

is the reciprocal
sampling duration, or fundamental frequency. The white noise power was estimated from the mean
periodogram power, which is equivalent to a least squares fit (Horne and Baliunas, 1986; Lancaster
and äalkauskas, 1986). The OUSS parameters s

o

, � and "

2 were estimated through a maximum-
likelihood fit to the periodogram, using the ALGLIB library (Bochkanov, 2013). The likelihood
function was approximated by
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)] /s(f
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where p1, .., pn are the periodogram powers calculated from the time series for any considered
frequencies f1, .., fn, and s(f) is given by Eq. (A.4) in A. Eq. (B.1) assumes the periodogram
powers p1, .., pn to be uncorrelated and is thus only exact in the limit of infinitely long time series.
If not mentioned otherwise, we considered all available periodogram frequencies.

False alarm probabilities (FAP) were estimated using at least 104 random periodograms (Bernoulli
trials) of the fitted OUSS model, emulated by exponentially distributed numbers as outlined in the
main article. At these sample sizes, the Bernoulli estimator has a standard deviation of at most
0.005 (and below 0.0025 if FAP < 0.05). Local P-values (i.e. of non-global periodogram peaks)
were calculated using the formula

P = 1� ⇥
1� e

�sp/s(fp)
⇤
N

,

(B.2)

where N is the number of considered frequencies, sp is the periodogram power at the considered
frequency fp and s is given by Eq. (A.4) in the Appendix. Note that di�erent normalization con-
ventions for periodograms will lead to rescaled estimates for s

o

and "

2, but this has no e�ect on the
estimated FAP.
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C Bias and correction of the FAP estimator

We tested the bias of the OUSS FAP estimator by numerically calculating the type-I error rate, i.e.
the rate at which OUSS time series are erroneously rejected and classified as cyclic. We generated
a large number of time series of the non-cyclic OUSS model described in the main article, while
choosing �, ⇢ (where ⇢ = exp(���) is the correlation between subsequent time points) and "/�

within a wide range. More precisely, �, ⇢ and "/� were uniformly and randomly picked in the
range [0.01, 0.2], (0, 1) and [0, 2], respectively. We considered time series of varying length up to
4000. For each time series length (TSL), we ran 25 000 Monte Carlo simulations (only 5000 for
TSL= 4000). Details on periodogram calculation and FAP estimation are given in B.

The FAP estimator is itself a random variable, whose cumulative distribution function (CDF)
under the OUSS null hypothesis should ideally (i.e., in the absence of bias) be the identity function,
F (t) = t. For example, at a 0.05 significance threshold, the null hypothesis should be rejected 5%

of the times. Fig. 1 shows the obtained cumulative distribution functions for FAPs estimated using
di�erent TSLs. As can be seen, a considerable bias exists for low quality time series. For example,
at a significance threshold 0.05 the type-I error rate is significantly lower than 5%. The bias disap-
pears for longer time series. This observation comes to no surprise, as our FAP estimator assumes
periodogram powers to be independent and exponentially distributed, which is only asymptotically
true for long time series.

To account for this bias, the obtained CDF was applied to the estimated FAPs in all subsequent
calculations. We remind the reader that for any continuous random variable X with CDF F , the
random variable F (X) is distributed within [0, 1] and has CDF G(t) = t (diagonal). Hence, by
mapping the estimated FAPs to the corresponding CDF value, one obtains new rescaled estimators
with a diagonal CDF. These rescaled estimators are, strictly speaking, not estimators for the tail of
the original test statistic introduced in the main article. But since the applied CDF is monotonic, the
rescaling preserves the order of the original FAPs. Hence, the rescaled (corrected) FAP remains
suitable for testing against the OUSS process and exhibits a correct type-I error rate.

The CDF of the original FAPs is, strictly speaking, a conditional one, that is, it depends on the
underlying OUSS process parameters as well as the sampling quality (TSL and time step). Nondi-
mensionalization reduces the number of free parameters to 3, for example ⇢ (i.e. the correlation
between subsequent time points), NSR = s

o

/(�"

2
) (i.e. the power ratio of the OU process to

measurement error, or noise to signal ratio, at zero frequency) and TSL. We thus constructed a 4-
dimensional rectangular grid spanning across di�erent TSLs (ranging from 10 to 2000), estimated
⇢ values (ranging from 0 to 1), estimated NSR values (ranging from 0 to 5) and di�erent FAP values
(ranging from 0.0005 to 1). Each grid point was assigned the empirical CDF value at the particular
FAP and for the particular TSL, after binning 400 000 Monte Carlo samples by their estimated ⇢

and NSR values. We used this grid to correct the FAPs estimated in all subsequent calculations.
CDF values between grid points were approximated using multilinear interpolation (Andrews et al.,
2013). Cases outside of the grid’s domain were mapped to the closest grid value. This yielded a
correct type-I error rate, e.g. a cycle detection rate of about 5% at a nominal significance level of
0.05. The precomputed grid and the appropriate FAP correction are included in the R package that
we provide.
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D Theoretical comparison

Times series of the OUSS model were generated using correlated draws, i.e. by choosing
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where w

i

and y

i

are independent standard-normal variables, ⇢
i

= e

��|ti+1�ti| is the correlation be-
tween two consecutive time points and f(t) is the deterministic asymptotic solution to the ordinary
di�erential equation df/dt = �(µ(t) � f(t)). The first value ex1 was drawn from a normal dis-
tribution with zero mean and variance �

2. The obtained time series z1, z2, .. follows the correct
distribution of the stationary OUSS model.

For the comparison of the OUSS and WN tests we generated 50000 low quality and 50000 high
quality time series of the OUSS model (40 points across 15 time units and 200 points across 25

time units, respectively). The standard deviation � and the resilience � were normalized to 1. The
oscillation period T was randomly and uniformly chosen within the interval [0.5, 4]. The ratios
↵/� and "/� were sampled uniformly on a regular grid of size 20 ⇥ 20 spanning the values [0, 3]
and [0, 2], respectively. The amplitude A, defined in Eq. 7 of the main article, is connected to the
parameters ↵ and T through

↵ =

A�p
�

2
+ (2⇡/T )

2
. (D.2)

Periodograms were analyzed as described in B and OUSS FAPs were corrected as described in C.

E LGSS models

For the simulations of the LGSS models (Eq. 8 and Eq. 9 in the main article) we used an explicit
two-step Runge-Kutta scheme, described in detail by Milstein (1995, §3.4, Theorem 3.3) and im-
plemented in C++. Our source code is given as a separate supplement. The carrying capacity K

and the intrinsic growth rate r were both normalized to 1, hence characteristic population sizes and
time units are both 1. The standard deviation � and the ratio "/� were randomly and uniformly
chosen within the intervals [0.01, 0.2] and [0, 2], respectively. For the cyclic model, the ratio ↵/�

and the oscillation amplitude T were chosen uniformly within [1, 3] and [0.5, 4], respectively. The
amplitude A was calculated from the chosen ↵ and T using

A =

↵

r

p
r

2
+ (2⇡/T )

2
. (E.1)

Cases for which A � K were skipped. Simulations ran for 25 time units and time series comprised
50 points. The integration time step was �t = 0.0002. We generated 104 independent time series for
the non-cyclic as well as the cyclic model. Initial population sizes were chosen randomly according
to the theoretical stationary distribution in the small-noise limit (i.e. as Gaussian variables with
variance �

2 around the deterministic trajectory). Periodograms were analyzed as described in B
and OUSS FAPs were corrected as described in C.
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F Statistical analysis of the GPDD

Population size entries in the GPDD on a logarithmic scale were transformed back into a linear
scale for consistency. Similarly to Kendall et al. (1998), we only considered time series consisting
of at least 25 data points (1712 cases). Four time series were omitted from the analysis either
because of inconsistent values or numerical fit problems. We used the Lomb-Scargle periodogram
(Lomb, 1976) because of gaps in several time series. The zero-frequency mode was omitted from
the analysis. For the WN test, time series were detrended using LOESS smoothing of degree 1 and
a span of half the data, similarly to Kendall et al. (1998). For the OUSS test, time series were not
preprocessed at all, and periodograms were either low-frequency trimmed at threshold ⌫ = 1/20 yr

or not pre-processed at all (see the main article for the resulting di�erences). In the former case, all
frequencies below ⌫ were omitted both when determining the periodogram peak as well as when
estimating the OUSS parameters. For the OUSS test, periodograms whose maximum was either
at the lowest mode (in the case of no frequency trimming) or exceeded in power by the immediate
lower mode (in the case of frequency trimming) were not considered cyclic, because such one-sided
peaks should not be considered indicators of a true power peak. For the WN test this was irrelevant
because detrending typically eliminated such one-sided peaks at the lowest mode. Apart from that,
periodograms were analyzed as described in B and OUSS FAPs were corrected as described in C.
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Fig. 1: Cumulative distribution function (CDF) of the uncorrected FAP estimator for randomly
generated non-cyclic OUSS time series of di�erent lengths. The grey diagonal corresponds to an
ideal (i.e. unbiased) FAP estimator and is shown for comparison. The type-I error rate of an
OUSS test at some significance threshold x is given by CDF(x). Technical details are given in C.
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