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Abstract.—Birth–death stochastic processes are the foundations of many phylogenetic models and are widely used to
make inferences about epidemiological and macroevolutionary dynamics. There are a large number of birth–death model
variants that have been developed; these impose different assumptions about the temporal dynamics of the parameters
and about the sampling process. As each of these variants was individually derived, it has been difficult to understand
the relationships between them as well as their precise biological and mathematical assumptions. Without a common
mathematical foundation, deriving new models is nontrivial. Here, we unify these models into a single framework, prove
that many previously developed epidemiological and macroevolutionary models are all special cases of a more general
model, and illustrate the connections between these variants. This unification includes both models where the process is
the same for all lineages and those in which it varies across types. We also outline a straightforward procedure for deriving
likelihood functions for arbitrarily complex birth–death(-sampling) models that will hopefully allow researchers to explore
a wider array of scenarios than was previously possible. By rederiving existing single-type birth–death sampling models,
we clarify and synthesize the range of explicit and implicit assumptions made by these models. [Birth–death processes;
epidemiology; macroevolution; phylogenetics; statistical inference.]

Evolutionary, demographic, and epidemiological pro-
cesses leave a footprint in the branch length distribution
and topology of reconstructed phylogenetic trees. This
insight has inspired a huge effort to extract information
about these processes by fitting stochastic models. For
example, in molecular epidemiology, researchers have
leveraged the fact that for many viral pathogens, such as
HIV and SARS-CoV-2, accumulate genetic diversity on
the timescale of transmission (Drummond et al. 2003;
Duffy et al. 2008). This genetic diversity can be used
to reconstruct the evolutionary relationships between
viral variants sampled from different hosts, which in
turn can help elucidate the epidemiological dynamics
of a pathogen over time (Grenfell et al. 2004; Volz 2012).
Similarly, phylogenetic trees can provide unique insights
into the temporal variation in speciation and extinction
rates (Morlon 2014).

Phylogenetic branching models can be broadly
grouped into two classes. The first, based on Kingman’s
coalescent process (Kingman 1982), has been widely
used to examine changes in the historical population
size of pathogens (Pybus et al. 2000; Strimmer and
Pybus 2001; Drummond et al. 2005; Volz et al. 2009).
These coalescent methods have also been applied to
reconstruct macroevolutionary dynamics (Morlon et al.
2010). Coalescent models are well suited for estimating
deterministic population dynamics; however, fitting
highly stochastic processes, such as the dynamics of an
emerging pathogen, is computationally intensive and in
some cases the assumptions of the coalescent may not
be appropriate (Stadler et al. 2015; Boskova et al. 2014;

Volz and Frost 2014). The second class of models, which
are collectively referred to as birth–death-sampling
(BDS) models (Kendall 1948; Maddison et al. 2007;
Stadler 2009; Stadler 2010), is well suited for stochastic
scenarios, and are thus becoming an increasingly
favorable and popular alternative to coalescent models in
epidemiology (Stadler et al. 2012) and have long been the
foundation of most macroevolutionary studies—both
for inferring speciation and extinction dynamics (Raup
1985; Nee et al. 1994) and for estimating divergence times
(Gernhard 2008; Heath et al. 2014). As the name implies,
the BDS process includes three types of events: birth
(pathogen transmission between hosts, or speciation
in a macroevolutionary context), death (host death or
recovery, or extinction in macroevolution), and sampling
(including fossil collection in macroevolution).

In the context of epidemiology, BDS models have
the additional property that the model parameters,
which can be estimated from viral sequence data,
explicitly correspond to parameters in classic structured
epidemiological models that are often fit to case
surveillance data. If we reparameterize these models,
we can describe the dynamics of the basic and effective
reproductive ratios (R0 and Re, respectively) over time
(Stadler et al. 2012; Stadler et al. 2013) (see Box 1).
A common research aim is to describe how the
frequency of birth, death, and sampling events, and
other derived variables such as Re, change throughout
the course of an epidemic. There has been less work
in macroevolution linking the parameters of a BDS
model to those of an underlying more mechanistic
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FIGURE B.1. BDS-SIR model connection. Top: The SIR epidemiological model. Black (gray) lines and classes represent rates and variables
followed (in)directly by the BDS model. The SIR model can be used to constrain the rates of the BDS model (a). Simulated forward in time, the
result of the BDS stochastic processes is a full tree (b) giving the complete genealogy of the viral population. Pruning away extinct and unsampled
lineages produces the sampled tree (c). Arising from a BDS process, this sampled tree can be summarized in two ways. First by the set of edges
(labeled 1–11) or as a set of critical times (horizontal lines) including: 1) the time of birth events (solid, xi) 2) terminal sampling times (dashed,
yj), and 3) ancestral sampling times (dotted, zk). Given the inferred rates from a reconstructed sampled tree, these rates can be used to estimate
characteristic parameters of the SIR model, for example, the basic or effective reproductive number.

BOX 1: THE CONNECTION BETWEEN BDS
AND SIR MODELS

The single-type BDS model is intimately related
to the SIR compartmental model used in
classic theoretical epidemiology. This connection
illustrates the explicit and implicit assumptions
of the general BDS model and its sub models.
Here, we define the SIR epidemiological model,
discuss how it can inform and be informed by these
diversification models, and examine the shared
assumptions of the two frameworks.

The SIR Model:

The SIR model partitions the host population via
infection status into susceptible (S), infected (I), and
recovered (R) hosts. Infection of susceptible hosts
occurs at a per-capita rate �I. Infected hosts may
recover (at rate �), die of virulent cases (at rate �),
or be sampled (at rate �). The cumulative number
of sampled hosts is represented in the SIR model

(Figure B.1 top) by I∗. Upon sampling, infected
hosts may be treated and hence effectively recover
with probability r. Hosts that have recovered from
infection exhibit temporary immunity to future
infection which wanes at rate �. The special case
of the SIR model with no immunity (the SIS
model) is obtained in the limit as �→∞. In
addition to these epidemiological processes, the
SIR model includes demographic processes, such
as host birth (rate B) and death from natural causes
(rate �). While not shown explicitly in the figure,
these epidemiological and demographic rates may
change over time as a result of host behavioral
change, pharmaceutical and nonpharmaceutical
interventions, or host/pathogen evolution.

The BDS Model:

The BDS model follows the number of sampled and
unsampled viral lineages over time, analogous to
the I and I∗ classes of the SIR model. A key element
of general BDS model is that birth and death rates
may vary over time. This time dependence may
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be either continuous (Morlon et al. 2011; Rabosky
and Lovette 2008b) or discrete (Stadler 2011; Stadler
and Bonhoeffer 2013; Gavryushkina et al. 2014;
Kühnert et al. 2014) Although arbitrarily time-
dependent, the birth, death, and sampling rates in
the general BDS model are assumed to be diversity-
independent, analogous to the assumption of
density-dependent transmission (pseudo mass
action) in the SIR model (Keeling and Rohani
2008). Incorporating such diversity dependence
into macroevolutionary models has been shown to
increase the accuracy of extinction rate estimates
and are necessary to accurately capture the
saturation of diversity (Etienne et al. 2012).
While some forms of diversity-dependence in
diversification rates may be incorporated implicitly
capturing deterministic diversity dependence as
time dependence (Rabosky and Lovette 2008a),
stochastic diversity-dependence (Etienne and
Rosindell 2012) goes beyond the scope of the BDS
models considered here.

The single-type BDS model assumes all
viral lineages are exchangeable—this has
several implications. First, all viral lineages are
epidemiologically identical hence all mutations
between them are neutral. Incorporating
nonneutral genetic variation requires a
multitype approach as in Equation (16). Second,
transmission is independent of lineage age. In the
macroevolutionary case, such age-dependence
has been suggested to reflect niche differentiation
in novel species (Hagen et al. 2015) and in the
epidemiological case may reflect adaptation
towards increased transmissibility following
a host species-jumping event. Third, lineage
exchangeability is reflected in the absence of an
exposed (E) class in the SIR model in which hosts
can, for example, transmit infections but not be
sampled or vice versa. Finally, the single-type BDS
model assumes all lineages are sampled at random
and does not include submodels with nonrandom
representation of lineages (Stadler et al. 2012).

Model Connections

Given their shared model assumptions, the single-
type BDS model can be constrained explicitly to
reflect an underlying SIR epidemic by setting the
viral birth rate equal to the per-capita transmission
rate of the infectious class �(	)=�S(	) and the
viral death rate to the infectious recovery or
removal rate 
(	)=�+�+�, whereas the sampling
rate �(	) is identical across models (Figure B1a).
While constraining the birth, death, and sampling
rates in this manner can be used to parameterize
compartmental models (Kühnert et al. 2014) doing

so is an approximation assuming independence
between the exact timing of transmission, recovery
or removal from the population, and sampling
events in the SIR model and birth, death, and
sampling events in the diversification model.
The resulting tree likelihood in terms of the
compartmental model is given by:

Pr(T |�SIR)= Pr(T |�BDS)︸ ︷︷ ︸
BDS likelihood

P(�BDS|�SIR)︸ ︷︷ ︸
SIR process

. (B1)

While they are not submodels of the general
BDS process given by equation 13, likelihood
models have been developed that capture the
full nonindependence of viral diversification
and epidemiological dynamics for the SIR
model specifically (Leventhal et al. 2012) and
in compartmental models in general (Vaughan
et al. 2019). The connection between the BDS
process and SIR epidemiological models can also
be used after the diversification rates are inferred
to estimate the basic and effective reproductive
rates (Stadler et al. 2012; Stadler and Bonhoeffer
2013). Specifically, the effective reproductive rate
at time 	 before the present day is given by
Re(	)= �(	)


(	)+r(	)�(	) . Although the SIR model is
a useful epidemiological model for is simplicity,
realistically modeling epidemic dynamics requires
far more complex compartmental models. As
reflected by their shared structure, the application
of the single-type BDS model is restricted, however,
to the assumptions of the SIR model alone and
further methodological advances in multitype
modeling are necessary for direct inference for the
larger class of epidemiological models.

model (but see Ezard et al. 2016) but this seems like a
promising avenue for future development. As we detail
below and in the Supplementary material available
at Dryad at https://doi.org/10.5281/zenodo.5028470,
there has been an astounding rise in the variety and
complexity of BDS model variants. A key assumption
in the specification of BDS submodels is whether all
lineages alive at some time point are exchangeable
(Stadler 2013) (such models are hereafter “single-type”
models), meaning they diversify according to the
same process, or if rather the diversification process is
variable (“multitype” models; e.g., Maddison et al. 2007;
FitzJohn 2012; Stadler and Bonhoeffer 2013; Rasmussen
and Stadler 2019; Barido-Sottani et al. 2018), with
lineages belonging to one of multiple possible states
each characterized by a unique process. Each of these
diversification processes can then be characterized by
different dynamical assumptions. In the epidemiological
case, these assumptions specify, for example, the
nature of viral transmission and the sampling
procedure (Stadler et al. 2013; Kühnert et al. 2014;
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Gavryushkina et al. 2014). While typically not explicitly
tied to mechanistic evolutionary processes, there
are a similar abundance of dynamical assumptions
employed in the macroevolutionary context specifying
the nature of biodiversity change through time (Nee
2006; Gernhard 2008; Morlon et al. 2011; Stadler 2011;
Morlon 2014; Heath et al. 2014; Louca 2020).

This flourishing of methods and models has facilitated
critical insights into epidemics (du Plessis and Stadler
2015; Joy et al. 2016) and the origins of contemporary
biodiversity (Morlon 2014; Schluter and Pennell 2017).
However, this diversity of models has made it difficult
to trace the connections between variants and to
understand the precise epidemiological, evolutionary,
and sampling processes that differ between them.
Furthermore, despite their apparent similarities, these
models have been derived on a case-by-case basis
using different notation and techniques; this creates a
substantial barrier for researchers working to develop
novel models for new situations. And critically, it is
imperative that we understand the general properties of
BDS phylogenetic models and the limits of inferences
from them (Louca and Pennell 2020a; Louca et al.
2021), and this is difficult to do without considering
the full breadth of possible scenarios. Here, we address
all of these challenges by unifying the whole class of
phylogenetic BDS models. We do so by first deriving a
likelihood for general single- and multitype BDS models;
in the general case, we do not assume anything about the
functional forms (i.e., temporal dynamics) of the various
parameters including the sampling rate through time,
the possibility of sampling ancestors (or not), or how
the process was conditioned. While such general models
may be useful for studying the mathematical properties
of BDS models as a whole (Lambert and Stadler 2013;
Louca and Pennell 2020a; Louca et al. 2021), statistical
inference from these models requires researchers to
make further constraints on the process. We prove that
existing BDS model variants are indeed submodels of
the more general case—and thereby clarify the specific
assumptions made by different models—and provide a
standardized notation and technique for deriving these
and other submodels that have not previously been
considered in the literature.

The Single-type Birth–Death-Sampling Model
Model specification.—The BDS stochastic process begins
with a single lineage at time T before the present day. We
note that this may be considerably older than the age of
the most recent common ancestor of an observed sample
which is given by tMRCA. While we focus primarily on
applications to epidemiology, our approach is agnostic to
whether the rates are interpreted as describing pathogen
transmission or macroevolutionary diversification.

In the model, transmission/speciation results in the
birth of a lineage and occurs at rate �(	), where 	 (0≤	≤
T) is measured in units of time before the present day
(	=0), such that � can be time-dependent. We make the
common assumption that lineages in the viral phylogeny

coalesce exactly at transmission events, thus ignoring the
within-host coalescent processes in the donor (Romero-
Severson et al. 2016). Throughout, we will use 	 as a a
general time variable and t× to denote the time at which
a specific event × occurs as measured in units of time
before the present day (see Supplementary Table S1).
Lineage extinction, resulting from host recovery or death
in the epidemiological case or the death of all individuals
in a population in the macroevolutionary case, occurs
at time-dependent rate 
(	). We allow for two distinct
types of sampling: lineages are either sampled according
to a Poisson process through time �(	) or binomially at
very short intervals, which we term “concerted sampling
attempts” (CSAs), where lineages at some specified
time tl are sampled with probability �l (�� denotes a
vector of concerted sampling events at different time
points). In macroevolutionary studies based only on
extant lineages, there is no Poissonian sampling, but
a CSA at the present (�0>0). In epidemiology, CSAs
correspond to large-scale testing efforts (relative to the
background rate of testing) in a short amount of time
(relative to the rates of viral sequence divergence); for
full explanation, see Appendix. We call these attempts
rather than events because if � is small or the infection
is rare in the population, few or no samples may
be obtained. CSAs can also be incorporated into the
model by including infinitesimally short spikes in the
sampling rate � (more precisely, appropriately scaled
Dirac distributions). Hence, for simplicity, in the main
text we focus on the seemingly simpler case of pure
Poissonian sampling through time except at the present-
day, where we allow for a CSA to facilitate comparisons
with macroevolutionary models; the resulting formulas
can then be used to derive a likelihood formula for the
case where past CSAs are included (see Appendix).

In the epidemiological case, sampling may be
concurrent (or not) with host treatment or behavioral
changes resulting in the effective extinction of the viral
lineage. Hence, we assume that sampling results in the
immediate extinction of the lineage with probability r(	).
As with the CSAs, this arbitrary time dependence allows
for the incorporation of Dirac spikes in any of these
variables, for example, with mass extinctions (
) and
lagerstätten in the fossil record (�(1−r)) (Magee and
Höhna 2021). Similarly, in the case of past CSAs, we
must include the probability, rl, that sampled hosts are
removed from the infectious pool during the CSA at time
tl. Poissonian sampling without the removal of lineages
(r(	)<1) can be employed in the macroevolutionary case
to explicitly model the collection of samples from the
fossil record (such as the fossilized-birth–death process;
Heath et al. 2014).

For our derivation, we make no assumption about the
temporal dynamics of �,
,�, or r; each may be constant,
or vary according to any arbitrary function of time given
that it is biologically valid (nonnegative and between
0 and 1 in the case of r). Specifically, the time-varying
functions may be any piecewise-continuous functions
of time with at most finite number of discontinuities
(see Rate Assumption section in the Appendix). Note
that these functions need not be differentiable. We make
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the standard assumption that at any given time any
given lineage experiences a birth, death or sampling
event independently of (and with the same probabilities
as) all other lineages. We revisit this assumption in
Box 1 where we discuss how the implicit assumptions
of the single-type BDS process are well summarized
by the diversification model’s relationship to the SIR
epidemiological model. Our resulting general time-
variable BDS process can be fully defined by the
parameter set �BDS ={�(	),
(	),�(	),r(	),��}.

In order to make inference about the model
parameters, we need to calculate the likelihood, L, that
an observed phylogeny, T , is the result of a given
BDS process. With respect to the BDS process there
are two ways to represent the information contained in
the phylogeny T , both of which have been used in the
literature, which we call the “edge” and “critical time”
representations, respectively. We begin by deriving the
likelihood in terms of the edge representation and
later demonstrate how to reformulate the likelihood
in terms of critical times. In the edge representation,
the phylogeny is summarized as a set of edges in
the mathematical graph that makes up the phylogeny,
numbered 1–11 in Figure B.1c, and the types of events
that occurred at each node. We define ge(	) as the
probability that the edge e which begins at time se and
ends at time te gives rise to the subsequently observed
phylogeny between time 	, (se<	< te) and the present
day. The likelihood of the model for the observed tree
is then, is by definition gstem(T): the probability density
that the stem lineage (stem=1 in Figure B.1c) gives rise
to the observed phylogeny from the origin, T, to the
present day. We find that it is more intuitive to derive
the likelihood in terms of the edge representation, as we
show below; from this it is straightforward to derive the
critical times formulation which results in mathematical
simplification. Below, we present our five-step technique
for the derivation of the tree likelihood.

Step 1. Deriving the Initial Value Problem (IVP) for ge(	).—
We derive the IVP for the likelihood density ge(	) using
an approach first developed by (Maddison et al., 2007).
We begin by deriving the recursion equation for ge by
considering all the possible events that could occur along
edge e between time 	 and 	+
	 assuming that that
	
is small enough such that at most one event is likely to
occur.
ge(	+
	)≈ (1−�(	)
	)(1−
(	)
	)(1−�(	)
	)×ge(	)︸ ︷︷ ︸

nothing happens

+�(	)
	(1−
(	)
	)(1−�(	)
	)×2ge(	)E(	)︸ ︷︷ ︸
birth event

+
(	)
	(1−�(	)
	)(1−�(	)
	)×0︸ ︷︷ ︸
death event

+�(	)
	(1−�(	)
	)(1−
(	)
	)×0︸ ︷︷ ︸
sampling event

+O(
	2).

(1)

Here, E(	) is the probability that a lineage alive at time
	 leaves no sampled descendants at the present day.
We will examine this probability in more detail below.
Assuming 
	 is small, we can approximate the above
recursion equation as the following difference equation.


ge(	)≈−(�(	)+
(	)+�(	))
	ge(	)

+2�(	)ge(	)E(	)
	+O(
	2). (2)

By the definition of the derivative, we have:

dge(	)
d	

=−(�(	)+
(	)+�(	))ge(	)+2�(	)ge(	)E(	). (3)

Equation (3) is known as the Kolmogorov backward
equation of the BDS process (Feller 1949; Louca and
Pennell 2020b). Beginning at time se, the initial condition
of ge depends on which event occurred at the beginning
of edge e.

ge(se)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�(se)ge1(se)ge2(se) birth event giving rise
to edges e1 and e2

(1−r(se))�(se)ge1(se) ancestral sampling event
�(se)r(se)+�(se)(1−r(se))E(se) terminal sampling event
�0 se =0, extant sample

(4)
Together Equations (3) and (4) define the initial value
problem for ge(	) as a function of the probability E(	).

Because the likelihood density ge is the solution to a
linear differential equation with initial condition at time
se, we can express its solution as follows:

ge(	)=�(se,	)ge(se), (5)

where the auxiliary function, �, is given by:

�(se,	)=exp
[∫ 	

se

2�(x)E(x)−(�(x)+
(x)+�(x)
)
dx
]
.

(6)
This function,�(s,t), maps the value of ge at time s to its
value at t, and hence is known as the probability “flow” of
the Kolmogorov backward equation (Louca and Pennell
2020b).

Step 2. Deriving the IVP for E(	).—We derive the IVP
for E(	) in a similar manner as above, beginning with
a difference equation.

E(	+
	)= (1−�(	)
	)(1−
(	)
	)(1−�(	)
	)×E(	)︸ ︷︷ ︸
nothing happens

+�(	)
	(1−
(	)
	)(1−�(	)
	)×E(	)2︸ ︷︷ ︸
birth event

+
(	)
	(1−�(	)
	)(1−�(	)
	)×1︸ ︷︷ ︸
death event

+�(	)
	(1−�(	)
	)(1−
(	)
	)×0︸ ︷︷ ︸
sampling event

.

(7)
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By the definition of a derivative, we have:

dE(	)
d	

=−(�(	)+
(	)+�(	))E(	)+�(	)E(	)2 +
(	),

E(0)=1−�0,

(8)

where �0 is the probability a lineage is sampled at the
present day. The initial condition at time 0 is therefore
the probability that a lineage alive at the present day is
not sampled. Given an analytical or numerical general
solution to E(	), we can find the likelihood by evaluating
gstem(T), as follows.

Step 3. Deriving the expression for gstem(T).—Given the
linear nature of the differential equation for ge(	) and
hence the representation in Equation (5)), the likelihood
gstem(	) is given by the product over all the initial
conditions times the product over the probability flow
for each edge.

gstem(T)= �
N0
0︸︷︷︸

extant
tips

I∏
i=1

�(xi)︸ ︷︷ ︸
births

n∏
j=1

[
�(yj)(1−r(yj))E(yj)+�(yj)r(yj)

]
︸ ︷︷ ︸

extinct tips

×
m∏

k=1

�(zk)(1−r(zk))

︸ ︷︷ ︸
ancestral samples

∏
e∈T

�(se,te)

︸ ︷︷ ︸
edges

,

(9)

where xi, yj, and zk are the times at which individual
birth, terminal sampling and ancestral sampling events
occur as we elaborated below.

Step 4. Representing gstem(T) in terms of critical times.—
Equation (9) can be further simplified by removing the
need to enumerate over all the edges of the phylogeny
(the last term of Equation (9)) and writing L in terms of
the tree’s critical times (horizontal lines in Fig. B.1). The
critical times of the tree are made up of three vectors, �x, �y,
and �z, as well as the time of origin T. The vector �x gives
the time of each birth event in the phylogeny and has
length I =N0 +n−1,where N0 is the number of lineages
sampled at the present day and n is the number of
terminal samples. Unless noted otherwise the elements
of vector �x are listed in decreasing order, such that
x1>x2>...xI and hence x1 is the time of the most recent
common ancestor tMRCA. The vector �y gives the timing
of each terminal sample and hence has length n whereas
vector �z gives the timing of each ancestral sample and
has length m. With respect to the BDS likelihood then the
sampled tree is summarized by T ={�x,�y,�z,T}. We note
that the critical times only contain the same information
as the edges as a result of the assumptions of the BDS
process but are not generally equivalent representations
of T .

As a result of the linear nature of ge(	) it is
straightforward to rewrite the likelihood in Equation
(9) in terms of the critical-time representation of the

sampled tree. Defining

�(	)=�(0,	)

=exp
[∫ 	

0
2�(x)E(x)−(�(x)+
(x)+�(x)

)
dx
]
, (10)

the probability flow � can be rewritten as the following
ratio:

�(s,	)= �(0,	)
�(0,s)

=�(	)
�(s)

. (11)

This relationship allows us to rewrite the likelihood by
expressing the product over the edges as two separate
products, one over the start of each edge and the other
over the end of each edge which in turn allows us
to rearrange and cancel terms to obtain an alternative
likelihood expression. Edges begin (value of te) at either:
1) the tree origin, 2) a birth event resulting to two
lineages, or 3) an ancestral sampling event. Edges end
(values of se) at either: 1) a birth event, 2) an ancestral
sampling event, 3) a terminal sampling event, or 4) the
present day. Hence we have:

gstem(T)=�(T)︸ ︷︷ ︸
root

×
(
�0

����(0)

)N0

︸ ︷︷ ︸
extant tips

×
I∏

i=1

�(xi)
�(xi)�2

����(xi)︸ ︷︷ ︸
births

×
n∏

j=1

�(yj)

�(yj)

[
(1−r(yj))E(yj)+r(yj)

]
︸ ︷︷ ︸

extinct tips

×
m∏

k=1

����(zk)

����(zk)
�(zk)(1−r(zk))

︸ ︷︷ ︸
ancestral samples

.

(12)

Note �(0)=1. While Equations (9) and (12) are
numerically identical, the critical time expression is more
convenient for application as it requires numerically
evaluating only a single function �(	) as given by
Equation (10).

Step 5. Conditioning the likelihood.—While Equation (12)
is equal to the basic model likelihood for the phylogeny
T , it is often appropriate to condition the tree likelihood
on the tree exhibiting some property, for example the
condition there being at least sampled lineage. Imposing
a condition on the likelihood is done by multiplying by
a factor S. Various conditioning schemes are considered
in section A4 and listed in Table S3 with the value
of S ranging in complexity from a constant to a
general function of the model parameters. The resulting
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likelihood expression for the general BDS model is:

L
(
�BDS,S|�x,�y,�z,N0

)

=S�N0
0 �(T)

I∏
i=1

�(xi)�(xi)

×
n∏

j=1

�(yj)

�(yj)

[
(1−r(yj))E(yj)+r(yj)

] m∏
k=1

�(zk)
(
1−r(zk)

)
(13)

Many Existing Models are Special Cases of this General
BDS Model

A large variety of previously published BDS models
in epidemiology and macroevolution are special cases
of the general model presented here (for a summary
of the models we investigated, see Supplementary
Table S2. Indeed, we can obtain the likelihood of
these models by adding mathematical constraints (i.e.,
simplifying assumptions) to the terms in Equation (13).
Our work thus not only provides a consistent notation
for unifying a multitude of seemingly disparate
models, it also provides a concrete and numerically
straightforward recipe for computing their likelihood
functions. We recognize that there are many valid
approaches for deriving tree likelihoods for BDS
models with share many similarities with our own
(e.g., Nee et al. 1994; Maddison et al. 2007; Gernhard
2008; Morlon et al. 2011; Lambert and Stadler 2013;
Lambert 2018; Laudanno et al. 2020; Louca and Pennell
2020b) and do not claim ours is superior to these;
however, we have found our technique to be intuitive
and flexible. We have implemented the single-type BDS
likelihood in the R package castor (Louca and Doebeli
2018), including routines for maximum-likelihood
fitting of BDS models with arbitrary functional forms
of the parameters given a phylogeny and routines
for simulating phylogenies under the general BDS
models (functions fit_hbds_model_on_grid,
fit_hbds_model_parametric and
generate_tree_hbds).

Figure 1 summarizes the simplifying assumptions that
underlie common previously published BDS models;
these assumptions generally fall into four categories:
1) assumptions about the functional form of birth,
death, and sampling rates over time, 2) assumptions
pertaining to the sampling of lineages, 3) the presence
of mass-extinction events, and 4) the nature of the
tree-conditioning as given by S. Here, we provide
a brief overview of the type of previously invoked
constraints which are consistent (or not) with our unified
framework; for full details on each specific case, we
refer readers to the Supplementary material. While
we illustrate these constraints within the single-type
context, analogous assumptions can be made within the
multitype context examined in the following section.

In regards to rate assumptions, many early BDS
models (Stadler 2009; Stadler 2010; Stadler et al. 2012)
assumed that the birth, death, and sampling rates
remained constant over time. This is mathematically and
computationally convenient since an analytical solution
can easily be obtained for E(	). In the epidemiological
case, holding � constant, however, implies that the
number of susceptible hosts is effectively constant
throughout the epidemic and/or that the population
does not change its behavior over time; this is
an unrealistic assumption given seasonal changes or
changes in response to the disease itself. As such, this
assumption is only really valid for small time periods
or the early stages of an epidemic. This is useful for
estimating the basic reproductive number, R0, of the
SIR model (Box 1) but not for the effective reproductive
number Re at later time points (Stadler et al. 2012).

A similarly tractable, but more epidemiologically
relevant, model is known as the “birth–death-skyline”
variant (Stadler and Bonhoeffer, 2013; Gavryushkina
et al., 2014), in which rates are piecewise-constant
functions through time (like the constant rate model,
there is also an analytical way to calculate the likelihood
of this model; see Appendix). The BDS skyline model
has been implemented under a variety of additional
assumptions in the Bayesian phylogenetics software
BEAST2 (Bouckaert et al. 2019). The BDS skyline model
has also been extended by (Kühnert et al., 2014) to
infer the the parameters of an underlying stochastic SIR
model. In this case the diversification model parameters
�BDS are random variables that emerge from stochastic
realizations of the epidemiological model given by�SIR,
see Equation (B1). Finally, the birth–death skyline model
with piecewise constant rates can also be applied in
the macroevolutionary case when no sampling occurs
through time, �(	)=0 (Stadler 2011).

In addition to imposing constraints on the temporal
variation in the rates, previously derived submodels
have considered a variety of different assumptions
about the nature of the sampling process. Most
notably, in macroevolutionary studies, sampling of
molecular data typically occurs only at the present
day (Stadler 2009; Stadler 2011; Morlon et al. 2011)
whereas past Poissonian sampling can be introduced
to include the sampling of fossil data (Heath et al.
2014). In epidemiology, concerted sampling at the
present day is likely biologically unrealistic (Stadler
et al. 2012), though in some implementations of the
models, such a sampling scheme has been imposed.
These concerted sampling attempts prior to the
present day as well as mass extinction events can be
incorporated via the inclusion of Dirac distributions
in the sampling and death rates, respectively. Finally,
previous models often multiply the likelihood by
a factor S in order to condition on a particular
observation (e.g., observing at least one lineage or exactly
N0 lineages), enumerate indistinguishable trees (e.g.,
accounting for possible orientations or unlabeled trees)
(Gavryushkina et al. 2013; Gavryushkina et al. 2014;
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et al. 2014

S1.7

Model Rates Sampling
Mass

Extinction Conditioning

constant

constant

constant

constant

piecewise
constant

piecewise
constant

piecewise
constant

stochastic
SIR

present-day

sampling

present-day

sampling

present-day

sampling

present-day

sampling

CSAs

CSAs

no
present-day

sampling

fossils

r ≤ 1r ≤ 1r ≤ 1

fossils

r ≤ 1r ≤ 1r ≤ 1

fossils

r ≤ 1r ≤ 1r ≤ 1

mass
extinction

× × × ×

constant

=

constant

=

constant

=

N0N0N0 samples

N0N0N0 samples tMRCAtMRCAtMRCA

tMRCAtMRCAtMRCA

tMRCAtMRCAtMRCA

≥ 1≥ 1≥ 1 sample

≥ 1≥ 1≥ 1 sample

≥ 1≥ 1≥ 1 sample

≥ 1≥ 1≥ 1 sample

≥ 1≥ 1≥ 1 extant
sample

≥ 1≥ 1≥ 1 extant
sample

or or

or

+++ +++

+++

+++

+++

+++

FIGURE 1. Submodel assumptions. Rate, sampling, mass extinction, and conditioning assumptions of existing submodels of the general
time-variable BDS process. The key points are that i) each of the previously developed models we considered can be obtained by adding specific
combinations of constraints to the various parameters of the general BDS model; and ii) that there are many plausible, and potentially biologically
informative combinations of constraints that have not been considered by researchers in epidemiology or macroevolution.

Stadler 2009), or to reflect known uncertainties.
The “fossilized-birth–death” likelihood derived by
Heath et al. (2014) for example, includes a factor
that reflects the uncertainty in the attachment and
placement of fossils on the macroevolutionary tree. This

fossilized-birth–death process has been used to estimate
divergence times and to model lineage diversification
(Gavryushkina et al. 2017; Landis et al. 2021). Variants
of the fossilized-birth–death process, for example
including mass extinction events, are feasible and can
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be derived using our approach. We also note that
models similar to the time-variable fossilized-birth–
death process have been developed for cases when
phylogenetic data is not available (i.e., when only
including fossil occurrence data; see Silvestro et al.
2014; Lehtonen et al. 2017); we have not investigated
how these models relate to our generalized BDS model
but we speculate that it would be possible to also
bring these models into a common framework with
those that we have discussed. Supplementary material
demonstrates how these submodels can be re-derived
by either imposing the necessary constraints on the
general likelihood formula given in Equation (13)
or, alternatively, by starting from the combinations
of assumptions and using the five-step procedure
outlined above.

The Multitype Birth–Death-Sampling Model
A common extension of the single-type diversification

models explored above is to consider cases where the
diversification rates (�,
,�) and probabilities (r,�) vary
among lineages as a function of a categorical “lineage
type”. This lineage type can be defined in terms of
specific (Maddison et al. 2007; Rasmussen and Stadler
2019) or unspecified traits (Beaulieu and O’Meara 2016)
or trait combinations (FitzJohn 2012) (for reviews of
these models see Morlon 2014; Ng and Smith 2014).
Representing these lineage types as colors at nodes and
along branches of the tree, we first extend the single-
type model above by deriving the likelihood of a fully
colored tree with topology T where the states along all
edges of the phylogeny are known as given by C. The
resulting likelihood is an extension of the likelihood
first developed by Barido-Sottani et al. (2018), where
the diversification rates and probabilities are allowed
to vary arbitrarily through time. To illustrate that our
derivation is indeed quite general, we follow the model
developed (independently) by Magnuson-Ford and Otto
(2012) and Goldberg and Igić (2012), where the state
of lineages can change either anagenetically, with a
lineage of type a mutating to a type b at rate �a,b(	) or
cladogenetically, with a lineage of type a giving rise to
a daughter lineage of type b at rate �a,b(	). Lineages
go extinct at a state-dependent rate 
a(	) and are
sampled at rate�a(	). As in the single-type model, upon
sampling lineages are removed from the population with
probability ra(	) whereas all lineages alive at the present
day are sampled with a probability �a(	). As discussed
in depth by Goldberg and Igić (2012), the other discrete
variations of state-dependent diversification models
(FitzJohn et al. 2009; Goldberg et al. 2011; FitzJohn 2012)
fall out as special cases of this model. (See Ng and Smith
2014; Caetano et al. 2018; Louca and Pennell 2020b for
further discussion of the connection between multitype
models.)

We use the five-step technique specified above for the
single-type case to derive the probability of observing a
given colored tree under a general multitype model (see

Supplementary material II). We first derive the initial
value problem for the probability ge,a(	) that an edge e of
type a in the tree at time 	 gives rise to the subsequently
observed phylogeny. The edge e here refers not to an
edge in the topological tree, but to a segment of the tree
all of one state between birth, sampling, or mutation
events.

dge,a(	)
d	

=−
⎛
⎝∑

b

�a,b(	)+
a(	)+�a(	)+
∑

b

�a,b(	)

⎞
⎠ge,a(	)

+
∑

b

�a,b�a,b(	)ge,a(	)Eb(	)

ge,a(se)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�a,b(se)ge1,a(se)ge2,b(se) birth event a→a+b

(1−ra(se))�a(se)ge1,a(se) ancestral sampling event

ra(se)�a(se)+(1−ra(se))�a(se)Ea(se) terminal sampling event(
�a,b(se)+�a,bEa

)
ge1,b(se) mutation/hidden birth

event a→b

�a sampled at present day.

(14)
Equation (16) distinguishes between multiple types
of birth events as pictured in Supplementary
Figure S1. Birth events may be symmetric, with
both daughter lineages inheriting the parental type.
The exchangeability of the resulting daughter lineages
is reflected in the indicator variable �a,b which takes
on value of 2 if a=b and 1 otherwise. In contrast
asymmetric birth events the resulting daughter lineages
differ in type due to caldogenetic change. Importantly,
the differential equation for ge,a is linear and hence has
a known general solution ge,a =ge,a(se)�(se,	). As in
the single-type model �(se,	) is the probability flow
(Louca and Pennell 2020b) mapping the probability
ge,a from the initial state at time se to the probability at
time 	.

An analogous initial value problem can be derived for
the probability Ea(	), that a lineage of type a alive at time
	 leaves no observed descendants in the sampled tree.

dEa(	)
d	

=−
⎛
⎝∑

b

�a,b(	)+
a(	)+�a(	)+
∑

b

�a,b(	)

⎞
⎠Ea(	)

+
∑

b

�a,b(	)Ea(	)Eb(	)+
a(	)+
∑

b

�a,b(	)Eb(	)

Ea(0)=1−�a (15)

This is a nonlinear differential equation and must be
solved numerically. Given the solution of ge,a and Ea the
likelihood for the fully colored tree is characterized by
a series of critical times: first, �xa,b the times at which a
lineage of type a gives birth to a lineage of type b, �ya
the ages of tip samples of type a, �za the ages of ancestral
samples of type a, and �wa,b the times at which lineages
are observed to transition events from type a to type b.
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The resulting likelihood is given by:
L(�MBDS|T ,C)

=S×�c∗ (T)×
⎡
⎣ A∏

a=1

�
Na
a

⎤
⎦×

⎡
⎣ A∏

a=1

A∏
b=1

Ia,b∏
i=1

�a,b(xa,b,i)�b(xa,b,i)

⎤
⎦

×
⎡
⎣ A∏

a=1

Ja∏
j=1

[
�a(ya,j)(1−ra(ya,j))Ea(ya,j)+�a(ya,j)ra(ya,j)

] 1
�a(ya,j)

⎤
⎦

×
⎡
⎣ A∏

a=1

Ka∏
k=1

�a(za,k)(1−ra(za,k))

⎤
⎦

×
⎡
⎣ A∏

a=1

A∏
b	=a

La,b∏
l=1

[
�a,b(wa,b,l)+�a,b(wa,b,l)Ea(wa,b,l)

]�b(wa,b,l)
�a(wa,b,l)

⎤
⎦

(16)

Here, S is an arbitrary form of conditioning as in
Equation (13) and �a(	)=�a(	,0), a complete list of
notation is given in Table S4.

Equation (16) gives the likelihood of a fully colored
tree, the tree topology plus the state along each
branch and at each node in the tree. This likelihood
is a generalization of that presented by (Barido-
Sottani et al., 2018, 2020). Maximizing Equation (16)
while incrementally adding and removing changes in
state along the branches of the tree can be used to
identify clades with distinct diversification parameters.
This method can be used, for example, to identify
transmission clusters within a disease outbreak (Barido-
Sottani et al. 2018). This likelihood is distinct from but
related to post-traversal likelihood methods developed
to infer state-dependent diversification rates given
the known state of sampled lineages (e.g., Maddison
et al. 2007; Magnuson-Ford and Otto 2012; Stadler
and Bonhoeffer 2013). Specifically, these methods give
the likelihood L

(
�MBDS|T ,C•

)
where C• ={C�,Cy,Cz} is

the state of present-day, C�, past Cy, and ancestral,
Cz, sampled lineages. The relationship between the
numerically obtained post-traversal likelihood and the
closed-form fully colored likelihood (Equation (16)) is
given by:

L
(
�MBDS|T ,C•

)= L
(
�MBDS|T ,C∗)

Pr(C∗|T ,C•,�MBDS)
. (17)

Here, C∗ is one specific coloring of the tree T (e.g.,
a maximum parsimony ancestral state reconstruction)
that is consistent with the observed states. We include
Equation (17) as it clarifies the relationship between these
two different approaches that have been used to calculate
multitype likelihoods in phylogenetics. Whether or
not this is useful for inference is an open question
as Pr(C∗|T ,C•,�MBDS) is challenging to compute (the
details of which are beyond the scope of the present
paper).

Concluding Remarks
In this article, we have unified a broad class of

BDS models that have been widely used both in
epidemiology and macroevolution. And in doing so,
we have also presented a standardized notation and

approach that can be used both for deriving the various
submodels that have previously been studied as well
as novel combinations of assumptions about the model
parameters. The unification of these models clarifies
the connections between BDS variants, facilitates the
development of new variants tailored to specific
scenarios, and provides a structure for understanding
how results depend on model assumptions (Kirkpatrick
et al. 2002; Lafferty et al. 2015; Louca and Pennell
2020a). And importantly, given the recent discovery of
widespread nonidentifiability in birth–death processes
fit to extant-only (Louca and Pennell 2020a) and serially
sampled (Louca et al. 2021) phylogenetic data, there
is a critical need to explore a much broader range
of BDS models than were previously considered and
the mathematical generalization presented here will be
enable this.
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APPENDIX: ADDING ASSUMPTIONS TO THE GENERAL MODEL

In this appendix, we demonstrate how one can
obtain the likelihood of submodels with different
sets of assumptions by applying constraints to the
general likelihood. There are four classes of assumptions
that are commonly applied in epidemiological and
macroevolutionary studies. First, researchers can make
assumptions about the functional form of the birth,
death, and sampling rates. Here, we address two such
unique assumptions: i) birth, death, and sampling rates
are constant (see the Rate Assumptions section, Sections
S1.1, S1.2, and S1.5 of the Supplementary material;
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and ii) birth, death, and sampling rates are piecewise-
constant functions of time (see Piecewise-constant Rates
section, Section S1.6 of the Supplementary material).
The cases where birth, death, and sampling rates are
defined by a stochastic or deterministic SIR model are
mathematically analogous to the cases of the piecewise-
constant and general time-variable models respectively.
All additional constraints imposed will depend on the
exact compartmental model used and hence we will not
discuss them in detail in this section. The second major
class of assumptions pertains to sampling. There are four
such sampling assumptions: i) sampling happens only
at the present day as in a birth–death model (see No
Sampling at the Present Section, Sections S1.1, S1.3, and
S1.4 of the Supplementary material) or as implemented
in the “Birth Death Skyline Contemporary” prior
in the BDSKY package in BEAST2; ii) the absence
of concerted present-day sampling (see Birth–Death
Models section, Section S1.5 of the Supplementary
material); iii) the inclusion of ancestral samples with
sampled descendants (Sections S1.6 and S1.7 of the
Supplementary material; and iv) concerted sampling
attempts (CSA) during which all lineages are sampled
with a given probability (see Concerted Sampling
Attempts section, Section S1.6 of the Supplementary
material). The third assumption class considers the
presence of mass extinction events (see Mass Extinction
section, Section S1.5 of the Supplementary material). The
fourth and final major class of assumptions deal with the
conditioning of the likelihood. The various conditioning
schemes are explored in below and summarized in
Supplementary Table S3 available on Dryad.

RATE ASSUMPTIONS

Constant Rates
• Model assumptions: Constant diversification rates:
�(t)=�, 
(t)=
, �(t)=�, and constant removal
probability r(t)=r.

• The IVP for ge(	):

dge(	)
d	

=−(�+
+�)ge(	)+2�ge(	)E(	)

ge(se)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�ge1(se)ge2(se) birth event giving rise to edges
e1 and e2

�(1−r)ge1(se) ancestral sampling event
�r+�(1−r)E(se) terminal sampling event
�0 se =0, edge sampled at

present day

• The IVP for E(	):

dE(	)
d	

=−(�+
+�)E(	)+�E(	)2 +
 E(0)=1−�0.

In this case the IVP for E(	) is a Bernoulli
differential equation and has a known analytical
solution. As given by Equation 1 in (Stadler, 2010)

this solution is given by:

E(	)=�+
+�
2�

+ c1
2�

e−c1t(1−c2)−(1+c2)
e−c1t(1−c2)+(1+c2)

c1 =
∣∣∣∣
√

(�−
−�)2 +4��
∣∣∣∣

c2 =−�−
−2��0 −�
c1

.

(A1)

• The probability flow:

�(	)=exp
[∫ 	

0
2�E(x)−(�+
+�)dx

]
.

• The likelihood:

LC =S�N0
0 �(T)�I�n+m(1−r)m∏I

i=1�(xi)
∏n

j=1
1

�(yj)

[
(1−r)E(yj)+r

]
(A2)

Piecewise-Constant Rates
• Model assumptions: Divide time into

L+1 intervals defined by transition times
0= t0< t1< t2<...< tL< tL+1 =T. Define rates
and removal probabilities constant within a given
interval.

�(	)=�l tl<	≤ tl+1


(	)=
l tl<	≤ tl+1

�(	)=�l tl<	≤ tl+1

r(	)=rl tl<	< tl+1

• The IVP and solution for ge(	): Given the definitions
of �(	), 
(	), �(	), and r(	) within each time
interval the IVP for ge(	) is identical to that
given in Equations (3) and (4). If gl,e(	) is the
probability density within time interval l than
gl,e(tl)=gl−1,e(tl).

• The IVP and solution for E(	): As with ge(	), the
IVP for E(	) is given by Equation (8). With the
piecewise-constant rate assumptions, however, the
general solution for E(	) between tl<	≤ tl+1 is
known (similar to Equation (A1)). Defining El(	)=
E(	) where tl<	≤ tl+1 and El(tl)=El−1(tl) we have:

El(	)= �l +
l +�l
2�l

+ c1
2�l

e−c1t(1−c2)−(1+c2)
e−c1t(1−c2)+(1+c2)

c1 =
∣∣∣∣√(�l −
l −�l)2 +4�l�l

∣∣∣∣
c2 =−�l −
l −2�l(1−El(tl))−�l

c1
,

where El(tl)=El−1(tl) for l>0 and E0(t0)=1−�0.
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• The probability flow: We define a probability subflow
within each time interval. Specifically, in the lth
time interval.

�l(	)=exp
[∫ 	

tl

2�lEl(x)−(�l +
l +�l
)
dx
]
.

The complete flow can be expressed as a function
of the subflows in the following manner:

�(	)=�L	 (	)
L	∏

l=1

�l−1(tl)

�(tk)=�k(tk)︸ ︷︷ ︸
1

k∏
l=1

�l−1(tl)=
k∏

l=1

�l−1(tl), (A3)

where Lt is the index of the time tl at or after time
t, that is, the largest index such that tl ≤	.

• The likelihood: Given these piecewise definitions
we substitute them into the general BDS
likelihood (13).

LPC =S �
N0
0︸︷︷︸

extant
tips

�L(T)
L∏

l=1

�l−1(tl)︸ ︷︷ ︸
root

×
I∏

i=1

⎡
⎣�Lxi

�Lxi
(xi)

Lxi∏
l=1

�l−1(tl)

⎤
⎦

︸ ︷︷ ︸
births

×
n∏

j=1

�Lyj

(
(1−rLyj

)ELyj
(yj)+rLyj

)
�Lyj

∏Lyj

l=1�l−1(tl)︸ ︷︷ ︸
extinct

tips

×
m∏

k=1

�Lzk

(
1−rLzk

)
︸ ︷︷ ︸

ancestral
samples

,

where we use PC to denote the piecewise-constant
assumption.

We can simplify several of these products. Let �l be
the number of birth events ≥ tl and �l the number
of sampling events ≥ tl.

I∏
i=1

Lxi∏
l=1

�l−1(tl)=
L∏

l=1

[
�l−1(tl)

]�l

n∏
j=1

Lyj∏
l=1

1
�l−1(tl)

=
L∏

l=1

[
�l−1(tl)

]−�l .

(A4)

Let nl be the number of observed lineages alive at
time tl. Because the number of observed lineages
increases with each birth and decreases with each
sampled tip, counting the root we have nl =�l −
�l +1. Substituting the expressions for the into the
likelihood and using the definition of nl we have:

LPC =S�N0
0 �L(T)

I∏
i=1

�Lxi
�Lxi

(xi)

×
n∏

j=1

�Lyj

�Lyj

(
(1−rLyj

)ELyj
(yj)+rLyj

) m∏
k=1

�Lzk

(
1−rLzk

)

×
L∏

l=1

�l−1(tl)
nl .

(A5)

SAMPLING ASSUMPTIONS

Birth–Death Models
• Model assumptions: The birth–death model assumes

that�(	)=0. Note that the probability of sampling
a lineage given it is alive at the present day remains
as �0 (incomplete sampling).

• IVP for ge(	):

dge(	)
d	

=−(�(	)+
(	))ge(	)+2�(	)ge(	)E(	)

ge(se)=

⎧⎪⎪⎨
⎪⎪⎩
�(se)ge1(se)ge2(se) birth event giving rise to

edges e1 and e2
�0 se =0, edge sampled at

present day

• IVP for E(	):

dE(	)
d	

=−(�(	)+
(	))E(	)

+�(	)E(	)2 +
(	) E(0)=1−�0.

Note in this case E(	) equals Ê(	), the probability a
lineage leaves no sampled extant descendants. As
demonstrated by (Morlon et al., 2011) there exists
a general solution to this initial value problem, see
Section ?? for more details. This general solution is
given by:

E(	)=1− �0exp
[∫ 	

0
(
�(u)−
(u)

)
du
]

1+∫ 	0 �0exp
[∫ x

0
(
�(u)−
(u)

)
du
]
dx
.

• The probability flow: From (Morlon et al., 2011), the
probability flow can be written as the following:

�(	)= exp
[∫ 	

0

(
�(�)−
(�)

)
d�
]
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[
1+
∫ 	

0 �0�(u)exp
[∫ u

0
(
�(�)−
(�)

)
d�
]
du

1+�0

]−2

.

• The likelihood:

LBD =S�N0
0 �(T)

I∏
i=1

�(xi)�(xi) (A6)

No Sampling at the Present
Here, we consider the case when �0 =0. The likelihood

follows exactly as in the general model case. The
resulting likelihood expression is given by:

L�0=0 =S�(T)
I∏

i=1

�(xi)�(xi)

×
n∏

j=1

�(yj)

�(yj)

[
(1−r(yj))E(yj)+r(yj)

] m∏
k=1

�(zk)
(
1−r(zk)

)
.

(A7)
Note that in this case I =n−1.

Concerted Sampling Attempts
• Model assumptions: Here, we introduce L concerted

sampling attempts (CSA) at known points in time,
tl l∈{1,2,...L}. Like the CSA at the present day,
and in contrast to the background Poissonian
sampling rate, during the CSA at time tl every
lineages is sampled with a fixed probability
�l. In the derivation of the likelihood below,
we must distinguish between three different
sampling event types. First, past Poissonian sampling
events are those that do not occur during
CSAs. Second, past concerted sampling events are
those that occur during a CSA at time tl l∈
{1,2,...,L}. Finally, present concerted sampling events
are those that occur at the present day 	=0.
Past concerted sampling attempts can be included
in the general model above by adding L Dirac
distributions to the Poisson sampling rate function.
Namely,

�(	)=�̄(	)+
L∑

l=1

[wl ∗�(	−tl)], (A8)

where �̄(	) is the background Poissonian sampling
rate and wl =−ln

(
1−�l

)
. The definition of wl

comes from solving the CDF of the exponentially
distribution for the “effective sampling rate” such
that the probability of a lineage being sampled
is �l.

• IVP for ge(	):

dge(	)
d	

=−(�(	)+
(	)+�(	))ge(	)+2�(	)ge(	)E(	)

ge(se)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(se)ge1(se)ge2(se) rise birth event giving
to edges e1 and e2

(1−r(se))�̄(se)ge1(se) Poisson ancestral
sampling event

�̄(se)r(se)+�̄(se)(1−r(se))E(se) Poisson terminal
sampling event

(1−r(tl))�lge1(tl) ancestral sample at tl
�lr(tl)+�l(1−r(tl))E(tl) terminal sample at tl
�0 se =0, edge sampled

at present day

The solution to ge(	) is given by Equations (5)
and (6).

• IVP for E(	): As with ge(	), the IVP for E(	) is
identical to that given for the general model in
Equation (8). Except in rare cases the IVP must
be solved numerically hence requiring numerical
integration over Dirac distributions which can
prove to be problematic.

Note however, that when examining the integrals
over the CSAs, a priori, it is a matter of
convention whether the Dirac distribution should
be considered as “integrated over” when located
at the upper integration bound

∫ b
a �(s−b)ds=1

or at the lower integration bound
∫ b

a �(s−a)ds=
1. Whichever convention we chose, we must
rigorously obey it so that the ratio �(t)/�(s)
correctly evaluates to �(s,t) whenever s≤ t. Using
the former convention, we can rewrite the
probability E(tl) at each concerted sampling time
tl as:

E(tl)=E(t−l )ewl =E(t−l )(1−�l),

where t−l denotes the limit as time approaches tl
from below. Hence, the probability E(	) at any time
	 can be evaluated numerically by considering the
dynamics between successive CSAs and at each
CSA separately.

• The probability flow: The probability flow is given
by:

�(	)=exp
[∫ 	

0 2�(x)E(x)−
(
�(x)+
(x)+�̄(x)+∑L

l=1wl�(x−tl)
)

dx
]
.

As with E(	) integration over the dirac
distributions can be problematic and hence
we rewrite this expression separating out these
terms. Let L	 be the oldest CSA occurring at or
after time 	, that is, the largest index for which
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tl ≤	.

�(	)=exp
[∫ 	

0
2�(x)E(x)

−
⎛
⎝�(x)+
(x)+�̄(x)+

L	∑
l=1

wl�(x−tl)

⎞
⎠dx

⎤
⎦

=exp
[∫ 	

0
2�(x)E(x)−(�(x)+
(x)+�̄(x)

)
dx
] L	∏

l=1

e−wl

=exp
[∫ 	

0
2�(x)E(x)−(�(x)+
(x)+�̄(x)

)
dx
] L	∏

l=1

(1−�l).

(A9)
We define:

�̄(	)=exp
[∫ 	

0
2�(x)E(x)−(�(x)+
(x)+�̄(x)

)
dx
]
,

(A10)
which means that we can rewrite Equation (A9) as:

�(	)=�̄(	)
L	∏

l=1

(1−�l). (A11)

• The likelihood: The edge representation of gstem is
given by:

gstem(T)=�N0
0

L∏
i=1

�(xi)
n∏

j=1

�(yj)

[
(1−r(yj))E(yj)+r(yj)

] m∏
k=1

�(zj)(1−r(yj))

×
L∏

l=1

�l [(1−rl)E(tl)+rl]
Nl

×
L∏

l=1

[�l(1−rl)]
Ml
∏

edges

�(se,te).

The critical time representation of gstem is given by:

gstem(T)= �
N0
0︸︷︷︸

extant tips

�̄(T)
L∏

l=1

(1−�l)︸ ︷︷ ︸
root

I∏
i=1

�(xi)�̄(xi)

⎡
⎣Lxi∏

l=1

(1−�l)

⎤
⎦

︸ ︷︷ ︸
births

×
n∏

j=1

�(yj)

�̄(yj)

[
(1−r(yj))E(yj)+r(yj)

]⎡⎢⎣
Lyj∏
l=1

1
1−�l

⎤
⎥⎦

︸ ︷︷ ︸
Pois. extinct tips

m∏
k=1

�(zk)(1−r(zk))

︸ ︷︷ ︸
Pois. ances. samples

×
L∏

l=1

(
�l
�̄(tl)

[(1−rl)E(tl)+rl]
)Nl

⎡
⎣ l∏

j=1

1
(1−�j)Nl

⎤
⎦

︸ ︷︷ ︸
CSA extinct tips

L∏
l=1

[�l(1−rl)]
Ml

︸ ︷︷ ︸
CSA ances. samples

,

where Nl is the number of tip samples (samples
without descendants) obtained during the lth
CSA and Ml is the number of ancestral samples
(sequences with descendants). By changing how
we enumerate birth, death, and sampling events
we can greatly simplify this likelihood. First, let
�l be the number of branching events at or before
the lth CSA. In other words, �l is the number of
branching events if the tree were trimmed at the
lth CSA. Then:

∏
i

⎡
⎣Lxi∏

l=1

(1−�l)

⎤
⎦=

L∏
l=1

(1−�l)
�l . (A12)

Second, let �l be the number of past Poissonian
sampling events before time tl. Then:

n∏
j

⎡
⎢⎣

Lyj∏
l=1

1
(1−�l)

⎤
⎥⎦=

L∏
l=1

1
(1−�l)�l

. (A13)

Finally, let �l be the number of past lineages
sampled during a CSA at or before the CSA at time
tl. Hence, �l =Nl +Nl+1 + ...+NL. Then:

L∏
l=1

⎡
⎣ l∏

j=1

1
(1−�j)Nl

⎤
⎦=

L∏
l=1

1
(1−�l)�l

. (A14)

The likelihood hence simplifies to:

gstem(T)=�N0
0 �̄(T)

L∏
l=1

(1−�l)
�l−�l−�l+1

I∏
i=1

�(xi)�̄(xi)

×
n∏

j=1

�(yj)

�̄(yj)

[
(1−r(yj))E(yj)+r(yj)

]
m∏

k=1

�(zk)(1−r(zk))

×
L∏

l=1

(
�l
�̄(tl)

[(1−rl)E(tl)+rl]
)Nl L∏

l=1

[�l(1−rl)]
Ml .

Let nl be the number of lineages that cross tl, that
is, the number of lineages alive at time tl with
sampled descendants at some younger age. Note
that by this definition n0 =0. Then bl +�l +nl is the
number of tips in the tree had it been trimmed at
age tl whereas�l is the number of branching events.
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Therefore we must have �l =bl +�l +nl −1. This
allows us to simplify the conditioned likelihood
given below.

LCSA =S�N0
0 �̄(T)

L∏
l=1

(1−�l)
nl

I∏
i=1

�(xi)�̄(xi)

×
n∏

j=1

�(yj)

�̄(yj)

[
(1−r(yj))E(yj)+r(yj)

] m∏
k=1

�(zk)(1−r(zk))

×
L∏

l=1

(
�l
�̄(tl)

[(1−rl)E(tl)+rl]
)Nl L∏

l=1

[�l(1−rl)]
Ml

(A15)

MASS EXTINCTION

• Model assumptions: In addition to the Poisson birth
death and sampling events considered in the
general model, there are L mass extinctions events
occurring at times t1> t2>..tL. During the lth mass
extinction event each lineage goes extinct with
probability �l. As with concerted sampling such
mass extinction events can be introduced into the
model by adding a set of dirac-delta functions to
the Poisson death rate, 
̄(	).


(	)= 
̄(	)+
L∑

l=1

ml�(	−tl), (A16)

where ml =−ln(1−�l).

• IVP for ge(	): The initial value problem for ge(	) is
identical to that given in equation by Equations
(3) and (4) except that 
 is now includes the mass
extinction events.

• IVP for E(	): The IVP for E(	) to that given
by Equation (8) except where the extinction
rate is given by Equation (A16). The solution
to E(	) is obtained by numerical integration.
Given the dirac-delta functions this numerical
integration can be carried out in a piecewise
manner integrating separately between and over
each mass extinction event. Defining E(t−l ) as the
solution up to but not including the mass extinction
event at time tl, we have:

E(tl)= (1−�l)E(t−l )+�l.

The first term reflects the probability that a lineage
that does not go extinct during the lth mass
extinction event leaves no observable offspring
(with probability E(t−l )) whereas the second term
reflects the fact that all lineages that go extinct
during the lth mass extinction leave no observed
descendants with probability 1.

• The probability flow: The solution to the IVP
is once again given by ge(	)=ge(se)�(se,	)=

ge(se)�(	)
se

where:

�(	)=exp
[∫ 	

0
2�(x)E(x)

−
⎛
⎝�(x)+
̄(x)+

L∑
l=1

ml�(x−tl)+�(x)

⎞
⎠dx

⎤
⎦.

As with the CSAs, let L	 be the last index l such
that tl<	. We can separate out the mass extinction
terms in the following way.

�(	)=exp
[∫ 	

0
2�(x)E(x)−(�(x)+
̄(x)+�(x)

)
dx
] L	∏

l=1

e−ml

=exp
[∫ 	

0
2�(x)E(x)−(�(x)+
̄(x)+�(x)

)
dx
] L	∏

l=1

(
1−�l

)

=�̄(	)
L	∏

l=1

(
1−�l

)
,

where �̄(	) is defined as in Equation (A10).

• The likelihood: Given these initial value problems
the likelihood follows as in the general model.

LME =S�N0
0 �̄(T)

L∏
l=1

(1−�l)
I∏

i=1

⎡
⎣�(xi)�̄(xi)

Lxi∏
l=1

(1−�l)

⎤
⎦

×
n∏

j=1

⎡
⎢⎣�(yj)

[
(1−r(yj))E(yj)+r(yj)

]
�̄(yj)

∏Lyj

l=1(1−�l)

⎤
⎥⎦ m∏

k=1

�(zk)(1−r(zk)).

As with the CSAs we can use relations analogous
to Equations A12–A14 to rewrite the likelihood:

LME =S�N0
0 �̄(T)

L∏
l=1

(1−�l)
nl

×
I∏

i=1

�(xi)�̄(xi)
n∏

j=1

�(yj)

�̄(yj)

[
(1−r(yj))E(yj)+r(yj)

] m∏
k=1

�(zk)(1−r(zk)),

(A17)
where nl is defined as before as the number of
lineages present at time tl.

ALTERNATIVE CONDITIONING

Supplementary Table S3 lists a number of possible
conditionings, S that can be applied to the tree
likelihood. First, is the trivial case of no conditioning
S0 =1 which gives the probability of the observed tree
including the stem edge between time T and tMRCA. To
obtain the model likelihood excluding the stem edge,
that is, conditioning of the tMRCA, can be obtained by
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setting S =S1 = �(x1)
�(T) . Recall that the elements of �x are

ordered such that x1 = tMRCA is the first (oldest) birth
event.

Acknowledging that one would not reconstruct a
phylogeny without any sampled lineages, we can
condition the likelihood on observing at least one
sampled lineage (either at or before the present day)
given the time of origin, S2 = 1

1−E(T) . Or as with S1,
conditioning on at least one sampled lineage given the
tMRCA. In order to have at least one sampled lineage and
a most recent common ancestor, however, each daughter
lineage of the common ancestor must have at least
one descendent. Hence, we have S3 = �(x1)

�(T)
1(

1−E(x1)
)2 .

The general birth–death-sampling model assumes that
all lineages alive at the present day are sampled with
probability �0. As with concerted sampling attempts
(CSAs) prior to the present day, this present day CSA
may include the sampling of multiple lineages as well
as possibly resulting in no sampled lineages. As with S2
and S3 we can condition the tree likelihood on observing
at least one extant lineage at the present day. To do so,
we define Ê(	)=E(	|�=0), the probability that a lineage
alive at time 	 has no extant descendants. Conditioning
on the time of origin we have: S4 = 1

1−Ê(T)
. Conditioning

on the time of the most recent common ancestor we have:

S5 = �(x1)
�(T)

1
2
(

1−Ê(x1)
)(

1−E(x1)
) , where now at least one of

the two daughter lineages of the common ancestor has
a present day sample. In many cases S5 is modified,
however, to condition on both daughter lineages having
an extant sampled descendent: S ′

5 = �(x1)
�(T)

1(
1−Ê(x1)

)2 .

As an alternative to conditioning on at least one extant
sampled descent, tree likelihoods can be conditioned
on having exactly N0 sampled (extant) descendants. Let
ÊN0 (	) be the probability a lineage alive at time 	 has
exactly N0 descendants. Although a general expression
for ÊN0 (	) is unknown, in the case of constant birth,
death, and sampling rates (the case in which this form
of conditioning has been applied), the expression for
ÊN0 (	) is given by (Gernhard, 2008), (Kendall, 1948) and
Theorem 3.3 by (Stadler, 2010):

ÊN0 (	)=�0�̂(	)
(
�



Ê(	)

)N0−1

ÊN0 (	)=�0�̂(	)

⎛
⎝ �0�

(
1−e−(�−
)t

)
��0 +(�(1−�0)−
)e−(�−
)t

⎞
⎠

N0−1

,

where, like Ê, �̂ is given by Equation (10) evaluated with
where �=0. Given the time of origin we can condition
on observing exactly N0 lineages by setting S =S6 =

1
ÊN0 (T)

. When tMRCA is given instead, then the number

of descendants of the two daughter lineages must add
up to N0 while both daughter lineages must still have at
least one descendant (see (Stadler, 2010) Corollary 3.9).

S =S7 =�(x1)
�(tor)

⎛
⎝N0−1∑

i=1

Êi(x1)ÊN0−i(x1)

⎞
⎠−1

=�(x1)
�(tor)

⎡
⎢⎣(N0 −1)(�0�̂(x1))2

⎛
⎝ �0�

(
1−e−(�−
)t

)
��0 +(�(1−�0)−
)e−(�−
)t

⎞
⎠

N0−2⎤⎥⎦
−1

.

While early BDS models often employed such
conditioning (Stadler 2009; Stadler 2010), this form
of conditioning has not been employed in many later
models perhaps because the biological justification for
such conditioning is vague.

The final form of conditioning used in the literature,
which we will represent simply as S8, is the
multiplication of the BDS likelihood by a constant
to account for the enumeration over the possible
indistinguishable representations of a given tree. The
value of this constant depends on whether the tree
considered is “labeled” and “oriented” (Gavryushkina
et al. 2013) and whether, as in the derivation here, the
vector of birth events, �x, is (un)ordered. Inclusion of
such a constant should have no effect on the maximum
likelihood inference of the model parameters given a
specified tree. In cases where the constant is a function of
the critical times (Heath et al. 2014), it can influence the
inference when the parameters and the tree are jointly
estimated.
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Part I

Single-type model

S1 Relationships between existing models

In the appendix, we proved that one could go from the most general case to specific sub-models by incorporat-
ing additional constraints to the parameters. In this section, we illustrate how to work in the other direction
— that is, to start with the most assumptions of a particular sub-model and derive its likelihood function
using the same five-step procedure used to derive the general BDS model in the Main Text. In addition to
illustrating the utility of our mathematical technique, by deriving the likelihoods of previously developed
models, we are able to unify a diverse and, occasionally opaque, literature using a common terminology,
notation, and formulation.

S1.1 Stadler 2009

Here we re-derive the likelihood given by Equation 2 in (Stadler, 2009). Note throughout all equation,
corollary, and theorem references in other publications will be placed in bold face type.

• Step 1: Specify the model.

– Constant rates: ⁄(·) = ⁄, µ(·) = µ.
– Birth-death model with incomplete sampling at present day: Â(·) = 0 and fl0 Æ 1.
– Conditioning on there being exactly N0 lineages at the present day given the time of origin, S6

and un-ordered birth events S8 = (N0 ≠ 1)!.

• Step 2: IVP for ge(·).
dge(·)

d·
= ≠ (⁄ ≠ µ)ge(·) + 2⁄ge(·)E(·)

ge(·) =
I

⁄ge1(se)ge2(se) birth
fl0 present day

• Step 3: IVP for E(·).

dE(·)
d·

= ≠(⁄ + µ)E(·) + ⁄E(·)2 + µ where E(0) = 1 ≠ fl0.

Given the constant rate assumption there exists a general solution for E(·).

E(·) =
⁄ + µ + c1

exp[≠c1t](1≠c2)≠(1+c2)
exp[≠c1t](1≠c2)+(1+c2)

2⁄

c1 =⁄ ≠ µ c2 = ⁄ ≠ µ ≠ 2⁄fl0
⁄ ≠ µ

2




	Unifying Phylogenetic Birth--Death Models in Epidemiology and Macroevolution

