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Problem 5.1 is pretty simple, so I do not write out the solutions.

Problem 5.2 The probability to find the unperturbed eigenstate
∣∣k(0)

〉
in

the exact eigenstate
∣∣k(λ)

〉
is

P =
|
〈
k(0)
∣∣k(λ)

〉
|2〈

k(λ)
∣∣k(λ)

〉 . (1)

Note that we need the denominator because, with the conventions we are
using,

∣∣k(λ)
〉

is not normalized. In fact, our normalization convention for∣∣k(λ)
〉

is
〈
k(0)
∣∣k(λ)

〉
= 1, so

P =
1〈

k(λ)
∣∣k(λ)

〉 . (2)

Now with ∣∣k(λ)
〉

=
∣∣k(0)

〉
+ λ
∣∣k(1)

〉
+ λ2

∣∣k(2)
〉

+ · · · (3)

and
〈
k(0)
∣∣k(0)

〉
= 1,

〈
k(n)
∣∣k(0)

〉
= 0 for n > 0, we have〈

k(λ)
∣∣k(λ)

〉
= 1 + λ2

〈
k(1)
∣∣k(1)

〉
+ · · · . (4)

Thus
P = 1− λ2

〈
k(1)
∣∣k(1)

〉
+ · · · . (5)

Recall that ∣∣k(1)
〉

=
Qk

E
(0)
k −H0

V
∣∣n(0)

〉
. (6)

Thus 〈
k(1)
∣∣k(1)

〉
=
〈
k(0)
∣∣V Qk

[E
(0)
k −H0]2

V
∣∣k(0)

〉
. (7)
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Inserting a complete set of unperturbed eigenstates, this is〈
k(1)
∣∣k(1)

〉
=
∑
l 6=k

〈
k(0)
∣∣V ∣∣l(0)

〉 1

[E
(0)
k − E

(0)
l ]2

〈
l(0)
∣∣V ∣∣k(0)

〉
. (8)

Thus

P = 1− λ2
∑
l 6=k

|
〈
l(0)
∣∣V ∣∣k(0)

〉
|2

[E
(0)
k − E

(0)
l ]2

+ · · · . (9)

Problem 5.3 Our particle is in a two dimensional box. The energy eigen-
function for the ground state is

ψ(x, y) =
2

L
sin(πx/L) sin(πy/L) (10)

For the first excited energy level, there are two states

ψ(x, y) =
2

L
sin(2πx/L) sin(πy/L) ,

ψ(x, y) =
2

L
sin(πx/L) sin(2πy/L) .

(11)

Thus
The energy shift for the ground state is just

∆ =

∫ L

0

dx

∫ L

0

dy |ψ(x, y)|2λxy

=
4λ

L2

(∫ L

0

dx x sin2(πx/L)

)2

=
4λ

L2

(
1

2

∫ L

0

dx (x+ L− x) sin2(πx/L)

)2

=
4λ

L2

(
L2

4

)2

=
λL2

4
.

(12)

The zeroth order energy eigenfunction is just the unperturbed ground state
wave function.

For the first excited energy level, there is a twofold degeneracy at zeroth
order so we need degenerate perturbation theory. However, we note that the
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perturbation is invariant under the operator P that interchanges x and y.
Thus we can diagonalize P along with H. The eigenstates of P within the
space spanned by the first excited states are

ψ+(x, y) =

√
2

L
{sin(2πx/L) sin(πy/L) + sin(πx/L) sin(2πy/L)} ,

ψ−(x, y) =

√
2

L
{sin(2πx/L) sin(πy/L)− sin(πx/L) sin(2πy/L)} .

(13)

Thus these are the zeroth order energy eigenstates. The corresponding energy
shifts are

∆± =

∫ L

0

dx

∫ L

0

dy |ψ±(x, y)|2λxy

=
2λ

L2

(∫ L

0

dx x sin2(2πx/L)

)(∫ L

0

dy y sin2(πy/L)

)
+

2λ

L2

(∫ L

0

dx x sin2(πx/L)

)(∫ L

0

dy y sin2(2πy/L)

)
± 4λ

L2

(∫ L

0

dx x sin(πx/L) sin(2πx/L)

)
×
(∫ L

0

dy y sin(πy/L) sin(2πy/L)

)
=

2λ

L2

(
L2

4

)(
L2

4

)
+

2λ

L2

(
L2

4

)(
L2

4

)
± 4λ

L2

(
8L2

9π2

)(
8L2

9π2

)
= λL2

{
1

4
± 256

81 π4

}
.

(14)

Problem 5.4 We have a harmonic oscillator in the x-direction and a har-
monic oscillator in the y-direction. The energies are

E(nx, ny) = (nx + ny + 1)ω , (15)

where nx and ny are non-negative integers. Thus the lowest energy levels are

E(0, 0) = ω ,

E(1, 0) = 2ω ,

E(0, 1) = 2ω .

(16)
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The second energy level has a double degeneraacy.
The first order energy shift for the ground state

∣∣0, 0〉 is just

∆ = δmω2
〈
0, 0
∣∣xy∣∣0, 0〉 = 0 . (17)

That is, the ground state energy remains equal to ω at first order.
For the first excited energy level, there is a twofold degeneracy at zeroth

order so we need degenerate perturbation theory. However, we note that the
perturbation is invariant under the operator P that interchanges x and y.
Thus we can diagonalize P along with H. The eigenstates of P within the
space spanned by the first excited states are∣∣±〉 =

1√
2

{∣∣1, 0〉± ∣∣0, 1〉} . (18)

Thus these are the zeroth order energy eigenstates. The corresponding first
order energy shifts are

∆± =
δmω2

2

{〈
1, 0
∣∣xy∣∣1, 0〉+

〈
0, 1
∣∣xy∣∣0, 1〉± 〈1, 0∣∣xy∣∣0, 1〉± 〈0, 1∣∣xy∣∣1, 0〉}

= ± δmω2
{〈

1
∣∣x∣∣0〉〈0∣∣y∣∣1〉+

〈
1
∣∣y∣∣0〉〈0∣∣x∣∣1〉}

(19)

where in the second line the first matrix element refers to the x-oscillator
and the second matrix refers to the y-oscillator. These matrix elements are〈

1
∣∣x∣∣0〉 =

〈
0
∣∣x∣∣1〉 =

〈
1
∣∣y∣∣0〉 =

〈
0
∣∣y∣∣1〉 =

1√
2mω

(20)

Thus

∆± = ± δmω

m
. (21)

The energy eigenvalues correct to first order in the perturbation are then

E± = 2ω ± δmω

m
. (22)

Now, let’s solve this exactly. We have

H =
p2
x

2m
+

p2
y

2m
+
mω2

2
(x2 + y2 +

δm

m
2xy) (23)
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This is

H =
p2
x

2m
+

p2
y

2m
+

(m+ δm)ω2

4
(x+ y)2 +

(m− δm)ω2

4
(x− y)2 . (24)

Let us define new coordinates

x̄ =
x+ y√

2
,

ȳ =
x− y√

2
,

(25)

Then

H =
p2
x̄

2m
+

p2
ȳ

2m
+

(m+ δm)ω2

2
x̄2 +

(m− δm)ω2

2
ȳ2 . (26)

Now we have two independent oscillators. The total energy is

E(nx̄, nȳ) =

(
nx̄ +

1

2

)
ω

√
1 +

δm

m
+

(
nȳ +

1

2

)
ω

√
1− δm

m
. (27)

Up to first order in δm, this is

E(nx̄, nȳ) ≈ (nx̄ + nȳ + 1)ω + (nx̄ − nȳ)ω
δm

m
. (28)

This agrees with what we found by applying first order perturbation theory
directly.
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