Problem solutions, 18 April 2012^{1}

D. E. Soper ${ }^{2}$

University of Oregon
27 April 2012

Problem 5.1 is pretty simple, so I do not write out the solutions.
Problem 5.2 The probability to find the unperturbed eigenstate $\left|k^{(0)}\right\rangle$ in the exact eigenstate $|k(\lambda)\rangle$ is

$$
\begin{equation*}
P=\frac{\left|\left\langle k^{(0)} \mid k(\lambda)\right\rangle\right|^{2}}{\langle k(\lambda) \mid k(\lambda)\rangle} . \tag{1}
\end{equation*}
$$

Note that we need the denominator because, with the conventions we are using, $|k(\lambda)\rangle$ is not normalized. In fact, our normalization convention for $|k(\lambda)\rangle$ is $\left\langle k^{(0)} \mid k(\lambda)\right\rangle=1$, so

$$
\begin{equation*}
P=\frac{1}{\langle k(\lambda) \mid k(\lambda)\rangle} \tag{2}
\end{equation*}
$$

Now with

$$
\begin{equation*}
|k(\lambda)\rangle=\left|k^{(0)}\right\rangle+\lambda\left|k^{(1)}\right\rangle+\lambda^{2}\left|k^{(2)}\right\rangle+\cdots \tag{3}
\end{equation*}
$$

and $\left\langle k^{(0)} \mid k^{(0)}\right\rangle=1,\left\langle k^{(n)} \mid k^{(0)}\right\rangle=0$ for $n>0$, we have

$$
\begin{equation*}
\langle k(\lambda) \mid k(\lambda)\rangle=1+\lambda^{2}\left\langle k^{(1)} \mid k^{(1)}\right\rangle+\cdots \tag{4}
\end{equation*}
$$

Thus

$$
\begin{equation*}
P=1-\lambda^{2}\left\langle k^{(1)} \mid k^{(1)}\right\rangle+\cdots . \tag{5}
\end{equation*}
$$

Recall that

$$
\begin{equation*}
\left|k^{(1)}\right\rangle=\frac{Q_{k}}{E_{k}^{(0)}-H_{0}} V\left|n^{(0)}\right\rangle \tag{6}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left\langle k^{(1)} \mid k^{(1)}\right\rangle=\left\langle k^{(0)}\right| V \frac{Q_{k}}{\left[E_{k}^{(0)}-H_{0}\right]^{2}} V\left|k^{(0)}\right\rangle . \tag{7}
\end{equation*}
$$

[^0]Inserting a complete set of unperturbed eigenstates, this is

$$
\begin{equation*}
\left\langle k^{(1)} \mid k^{(1)}\right\rangle=\sum_{l \neq k}\left\langle k^{(0)}\right| V\left|l^{(0)}\right\rangle \frac{1}{\left[E_{k}^{(0)}-E_{l}^{(0)}\right]^{2}}\left\langle l^{(0)}\right| V\left|k^{(0)}\right\rangle . \tag{8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
P=1-\lambda^{2} \sum_{l \neq k} \frac{\left.\left|\left\langle l^{(0)}\right| V\right| k^{(0)}\right\rangle\left.\right|^{2}}{\left[E_{k}^{(0)}-E_{l}^{(0)}\right]^{2}}+\cdots \tag{9}
\end{equation*}
$$

Problem 5.3 Our particle is in a two dimensional box. The energy eigenfunction for the ground state is

$$
\begin{equation*}
\psi(x, y)=\frac{2}{L} \sin (\pi x / L) \sin (\pi y / L) \tag{10}
\end{equation*}
$$

For the first excited energy level, there are two states

$$
\begin{align*}
& \psi(x, y)=\frac{2}{L} \sin (2 \pi x / L) \sin (\pi y / L) \\
& \psi(x, y)=\frac{2}{L} \sin (\pi x / L) \sin (2 \pi y / L) \tag{11}
\end{align*}
$$

Thus
The energy shift for the ground state is just

$$
\begin{align*}
\Delta & =\int_{0}^{L} d x \int_{0}^{L} d y|\psi(x, y)|^{2} \lambda x y \\
& =\frac{4 \lambda}{L^{2}}\left(\int_{0}^{L} d x x \sin ^{2}(\pi x / L)\right)^{2} \\
& =\frac{4 \lambda}{L^{2}}\left(\frac{1}{2} \int_{0}^{L} d x(x+L-x) \sin ^{2}(\pi x / L)\right)^{2} \tag{12}\\
& =\frac{4 \lambda}{L^{2}}\left(\frac{L^{2}}{4}\right)^{2} \\
& =\frac{\lambda L^{2}}{4}
\end{align*}
$$

The zeroth order energy eigenfunction is just the unperturbed ground state wave function.

For the first excited energy level, there is a twofold degeneracy at zeroth order so we need degenerate perturbation theory. However, we note that the
perturbation is invariant under the operator P that interchanges x and y. Thus we can diagonalize P along with H. The eigenstates of P within the space spanned by the first excited states are

$$
\begin{align*}
& \psi_{+}(x, y)=\frac{\sqrt{2}}{L}\{\sin (2 \pi x / L) \sin (\pi y / L)+\sin (\pi x / L) \sin (2 \pi y / L)\} \tag{13}\\
& \psi_{-}(x, y)=\frac{\sqrt{2}}{L}\{\sin (2 \pi x / L) \sin (\pi y / L)-\sin (\pi x / L) \sin (2 \pi y / L)\}
\end{align*}
$$

Thus these are the zeroth order energy eigenstates. The corresponding energy shifts are

$$
\begin{align*}
\Delta_{ \pm}= & \int_{0}^{L} d x \int_{0}^{L} d y\left|\psi_{ \pm}(x, y)\right|^{2} \lambda x y \\
= & \frac{2 \lambda}{L^{2}}\left(\int_{0}^{L} d x x \sin ^{2}(2 \pi x / L)\right)\left(\int_{0}^{L} d y y \sin ^{2}(\pi y / L)\right) \\
& +\frac{2 \lambda}{L^{2}}\left(\int_{0}^{L} d x x \sin ^{2}(\pi x / L)\right)\left(\int_{0}^{L} d y y \sin ^{2}(2 \pi y / L)\right) \\
& \pm \frac{4 \lambda}{L^{2}}\left(\int_{0}^{L} d x x \sin (\pi x / L) \sin (2 \pi x / L)\right) \tag{14}\\
& \times\left(\int_{0}^{L} d y y \sin (\pi y / L) \sin (2 \pi y / L)\right) \\
= & \frac{2 \lambda}{L^{2}}\left(\frac{L^{2}}{4}\right)\left(\frac{L^{2}}{4}\right)+\frac{2 \lambda}{L^{2}}\left(\frac{L^{2}}{4}\right)\left(\frac{L^{2}}{4}\right) \pm \frac{4 \lambda}{L^{2}}\left(\frac{8 L^{2}}{9 \pi^{2}}\right)\left(\frac{8 L^{2}}{9 \pi^{2}}\right) \\
= & \lambda L^{2}\left\{\frac{1}{4} \pm \frac{256}{81 \pi^{4}}\right\} .
\end{align*}
$$

Problem 5.4 We have a harmonic oscillator in the x-direction and a harmonic oscillator in the y-direction. The energies are

$$
\begin{equation*}
E\left(n_{x}, n_{y}\right)=\left(n_{x}+n_{y}+1\right) \omega, \tag{15}
\end{equation*}
$$

where n_{x} and n_{y} are non-negative integers. Thus the lowest energy levels are

$$
\begin{align*}
& E(0,0)=\omega, \\
& E(1,0)=2 \omega, \tag{16}\\
& E(0,1)=2 \omega .
\end{align*}
$$

The second energy level has a double degeneraacy.
The first order energy shift for the ground state $|0,0\rangle$ is just

$$
\begin{equation*}
\Delta=\delta m \omega^{2}\langle 0,0| x y|0,0\rangle=0 \tag{17}
\end{equation*}
$$

That is, the ground state energy remains equal to ω at first order.
For the first excited energy level, there is a twofold degeneracy at zeroth order so we need degenerate perturbation theory. However, we note that the perturbation is invariant under the operator P that interchanges x and y. Thus we can diagonalize P along with H. The eigenstates of P within the space spanned by the first excited states are

Thus these are the zeroth order energy eigenstates. The corresponding first order energy shifts are

$$
\begin{align*}
\Delta_{ \pm} & =\frac{\delta m \omega^{2}}{2}\{\langle 1,0| x y|1,0\rangle+\langle 0,1| x y|0,1\rangle \pm\langle 1,0| x y|0,1\rangle \pm\langle 0,1| x y|1,0\rangle\} \\
& = \pm \delta m \omega^{2}\{\langle 1| x|0\rangle\langle 0| y|1\rangle+\langle 1| y|0\rangle\langle 0| x|1\rangle\} \tag{19}
\end{align*}
$$

where in the second line the first matrix element refers to the x-oscillator and the second matrix refers to the y-oscillator. These matrix elements are

$$
\begin{equation*}
\langle 1| x|0\rangle=\langle 0| x|1\rangle=\langle 1| y|0\rangle=\langle 0| y|1\rangle=\frac{1}{\sqrt{2 m \omega}} \tag{20}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\Delta_{ \pm}= \pm \frac{\delta m \omega}{m} \tag{21}
\end{equation*}
$$

The energy eigenvalues correct to first order in the perturbation are then

$$
\begin{equation*}
E_{ \pm}=2 \omega \pm \frac{\delta m \omega}{m} \tag{22}
\end{equation*}
$$

Now, let's solve this exactly. We have

$$
\begin{equation*}
H=\frac{p_{x}^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}+\frac{m \omega^{2}}{2}\left(x^{2}+y^{2}+\frac{\delta m}{m} 2 x y\right) \tag{23}
\end{equation*}
$$

This is

$$
\begin{equation*}
H=\frac{p_{x}^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}+\frac{(m+\delta m) \omega^{2}}{4}(x+y)^{2}+\frac{(m-\delta m) \omega^{2}}{4}(x-y)^{2} \tag{24}
\end{equation*}
$$

Let us define new coordinates

$$
\begin{align*}
& \bar{x}=\frac{x+y}{\sqrt{2}} \\
& \bar{y}=\frac{x-y}{\sqrt{2}}, \tag{25}
\end{align*}
$$

Then

$$
\begin{equation*}
H=\frac{p_{\bar{x}}^{2}}{2 m}+\frac{p_{\bar{y}}^{2}}{2 m}+\frac{(m+\delta m) \omega^{2}}{2} \bar{x}^{2}+\frac{(m-\delta m) \omega^{2}}{2} \bar{y}^{2} . \tag{26}
\end{equation*}
$$

Now we have two independent oscillators. The total energy is

$$
\begin{equation*}
E\left(n_{\bar{x}}, n_{\bar{y}}\right)=\left(n_{\bar{x}}+\frac{1}{2}\right) \omega \sqrt{1+\frac{\delta m}{m}}+\left(n_{\bar{y}}+\frac{1}{2}\right) \omega \sqrt{1-\frac{\delta m}{m}} . \tag{27}
\end{equation*}
$$

Up to first order in δm, this is

$$
\begin{equation*}
E\left(n_{\bar{x}}, n_{\bar{y}}\right) \approx\left(n_{\bar{x}}+n_{\bar{y}}+1\right) \omega+\left(n_{\bar{x}}-n_{\bar{y}}\right) \omega \frac{\delta m}{m} \tag{28}
\end{equation*}
$$

This agrees with what we found by applying first order perturbation theory directly.

[^0]: ${ }^{1}$ Copyright, 2012, D. E. Soper
 ${ }^{2}$ soper@uoregon.edu

