Problem solutions, 25 April 2012^{1}

D. E. Soper ${ }^{2}$

University of Oregon
30 April 2012

Problems 5.20 and 5.21 were pretty simple, so I do not write out the solutions, but here is a solution for problem 5.12.
Problem 5.12 We are asked to find the eigenvalues of the matrix $H=H_{0}+V$ with

$$
H=\left(\begin{array}{ccc}
E_{1} & 0 & 0 \tag{1}\\
0 & E_{1} & 0 \\
0 & 0 & E_{2}
\end{array}\right)
$$

and

$$
V=\left(\begin{array}{ccc}
0 & 0 & a \tag{2}\\
0 & 0 & b \\
a^{*} & b^{*} & 0
\end{array}\right)
$$

We are to use perturbation theory to find the eigenvalues to second order in V and we are also asked to compare to the exact answer.

First, let's look at what happens to the state with unperturbed energy E_{2}. The unperturbed energy level is non-degenerate, so we can apply nondegenerate perturbation theory. This gives

$$
\begin{equation*}
\Delta_{2}^{(1)}=\langle 2| V|2\rangle \tag{3}
\end{equation*}
$$

where

$$
|2\rangle=\left(\begin{array}{l}
0 \tag{4}\\
0 \\
1
\end{array}\right)
$$

This gives

$$
\begin{equation*}
\Delta_{2}^{(1)}=0 \tag{5}
\end{equation*}
$$

At second order, we have

$$
\begin{equation*}
\Delta_{2}^{(2)}=\langle 2| V \frac{Q_{2}}{E_{2}-H_{0}} V|2\rangle=\frac{1}{E_{2}-E_{1}}\langle 2| V Q_{2} V|2\rangle, \tag{6}
\end{equation*}
$$

[^0]where
\[

Q_{2}=\left($$
\begin{array}{lll}
1 & 0 & 0 \tag{7}\\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}
$$\right)
\]

That is,

$$
\Delta_{2}^{(2)}=\frac{1}{E_{2}-E_{1}}(0,0,1)\left(\begin{array}{ccc}
0 & 0 & 0 \tag{8}\\
0 & 0 & 0 \\
0 & 0 & |a|^{2}+|b|^{2}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

We get

$$
\begin{equation*}
\Delta_{2}^{(2)}=\frac{|a|^{2}+|b|^{2}}{E_{2}-E_{1}} \tag{9}
\end{equation*}
$$

Now, let's look at what happens to the state with unperturbed energy E_{1}. The unperturbed energy level is degenerate, so we can apply degenerate perturbation theory. This gives

$$
\begin{equation*}
\Delta_{1}^{(1)}|1\rangle=P_{1} V P_{1}|1\rangle \tag{10}
\end{equation*}
$$

where P_{1} is the projection operator onto the subspace with unperturbed energy E_{1}, namely

$$
P_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \tag{11}\\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

By multiplying the matrices, we see that $P_{1} V P_{1}=0$. Thus

$$
\begin{equation*}
\Delta_{1}^{(1)}|1\rangle=0 \tag{12}
\end{equation*}
$$

At second order, we have a non-trivial result:

$$
\begin{equation*}
\Delta_{1}^{(2)}|1\rangle=P_{1}^{(2)} V \frac{Q_{1}}{E_{1}-H_{0}} V P_{1}^{(2)}|1\rangle \tag{13}
\end{equation*}
$$

There $P_{1}^{(2)}$ is the projection onto the subspace of the space with unperturbed energy eigenvalue E_{1} that is still degenerate after using first order perturbation theory. In the present case, this is the whole space with unperturbed energy eigenvalue E_{1}. That is, $P_{1}^{(2)}=P_{1}$. Also, Q_{1} is $1-P_{1}$:

$$
Q_{1}=\left(\begin{array}{lll}
0 & 0 & 0 \tag{14}\\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Since $H_{0} \psi|\psi\rangle=E_{2}|\psi\rangle$, we have

$$
\begin{equation*}
\Delta_{1}^{(2)}|1\rangle=\frac{1}{E_{1}-E_{2}} P_{1} V Q_{1} V P_{1}|1\rangle \tag{15}
\end{equation*}
$$

That is

$$
\Delta_{1}^{(2)}|1\rangle=\frac{-1}{E_{2}-E_{1}}\left(\begin{array}{ccc}
|a|^{2} & a b^{*} & 0 \tag{16}\\
b a^{*} & |b|^{2} & 0 \\
0 & 0 & 0
\end{array}\right)|1\rangle
$$

Here $|1\rangle$ should lie in the subspace projected by P_{1}. This is a simple eigenvalue equation. The first eigenvector is

$$
|1,+\rangle=\frac{1}{\sqrt{|a|^{2}+|b|^{2}}}\left(\begin{array}{l}
a \tag{17}\\
b \\
0
\end{array}\right)
$$

with eigenvalue

$$
\begin{equation*}
\Delta_{1,+}^{(2)}=-\frac{|a|^{2}+|b|^{2}}{E_{2}-E_{1}} \tag{18}
\end{equation*}
$$

The second eigenvector is

$$
|1,-\rangle=\frac{1}{\sqrt{|a|^{2}+|b|^{2}}}\left(\begin{array}{c}
b^{*} \tag{19}\\
-a^{*} \\
0
\end{array}\right)
$$

with eigenvalue

$$
\begin{equation*}
\Delta_{1,+}^{(2)}=0 \tag{20}
\end{equation*}
$$

Thus to order V^{2} the eigenvalues are

$$
\begin{align*}
& E=E_{1}-\frac{|a|^{2}+|b|^{2}}{E_{2}-E_{1}} \\
& E=E_{1}, \tag{21}\\
& E=E_{2}+\frac{|a|^{2}+|b|^{2}}{E_{2}-E_{1}}
\end{align*}
$$

The problem also asks us to do this the wrong way, by trying to use nondegenerate perturbation theory. I skip that.

It is straightforward to find the exact eigenvalues, with the result

$$
\begin{align*}
& E=\frac{E_{1}+E_{2}}{2}-\frac{1}{2} \sqrt{\left(E_{2}-E_{1}\right)^{2}+4\left(|a|^{2}+|b|^{2}\right)} \\
& E=E_{1}, \tag{22}\\
& E=\frac{E_{1}+E_{2}}{2}+\frac{1}{2} \sqrt{\left(E_{2}-E_{1}\right)^{2}+4\left(|a|^{2}+|b|^{2}\right)} .
\end{align*}
$$

When we expand this to second order in a and b, we recover the perturbative result.

[^0]: ${ }^{1}$ Copyright, 2012, D. E. Soper
 ${ }^{2}$ soper@uoregon.edu

