Problem solutions, 2 May $2012{ }^{1}$

D. E. Soper ${ }^{2}$

University of Oregon
9 May 2012

Here is a solution for problem 5.22, which seemed to cause the most difficulty.

Problem 5.22 The expectation value of x is

$$
\begin{equation*}
\langle x(t)\rangle=-i\langle 0| x_{I}(t) \int_{0}^{t} d \tau V_{I}(\tau)|0\rangle+i\langle 0| \int_{0}^{t} d \tau V_{I}(\tau) x_{I}(t)|0\rangle \tag{1}
\end{equation*}
$$

For the given $V(t)$, this is

$$
\begin{equation*}
\langle x(t)\rangle=-i F_{0} \int_{0}^{t} d \tau \cos (\omega \tau)\langle 0| x_{I}(t) x_{I}(\tau)-x_{I}(\tau) x_{I}(t)|0\rangle \tag{2}
\end{equation*}
$$

We can insert a complete set of states between the two x operators. The only state that contributes is the first excited oscillator state. Thus

$$
\begin{align*}
\langle x(t)\rangle= & -i F_{0} \int_{0}^{t} d \tau \cos (\omega \tau) \\
& \left\{\langle 0| x_{I}(t)|1\rangle\langle 1| x_{I}(\tau)|0\rangle-\langle 0| x_{I}(\tau)|1\rangle\langle 1| x_{I}(t)|0\rangle\right\} . \tag{3}
\end{align*}
$$

Including the interaction picture time dependence, this is

$$
\begin{align*}
\langle x(t)\rangle= & -i F_{0} \int_{0}^{t} d \tau \cos (\omega \tau) \tag{4}\\
& \left\{e^{-i \omega_{0}(t-\tau)}\langle 0| x|1\rangle\langle 1| x|0\rangle-e^{+i \omega_{0}(t-\tau)}\langle 0| x|1\rangle\langle 1| x|0\rangle\right\}
\end{align*}
$$

Using the known value of $\langle 1| x|0\rangle$, this is

$$
\begin{equation*}
\langle x(t)\rangle=-i F_{0} \int_{0}^{t} d \tau \cos (\omega \tau) \frac{1}{2 m \omega_{0}}\left\{e^{-i \omega_{0}(t-\tau)}-e^{+i \omega_{0}(t-\tau)}\right\} . \tag{5}
\end{equation*}
$$

[^0]That is

$$
\begin{equation*}
\langle x(t)\rangle=-\frac{F_{0}}{m \omega_{0}} \int_{0}^{t} d \tau \cos (\omega \tau) \sin \left(\omega_{0}(t-\tau)\right) \tag{6}
\end{equation*}
$$

We can simplify this to

$$
\begin{equation*}
\langle x(t)\rangle=-\frac{F_{0}}{2 m \omega_{0}} \int_{0}^{t} d \tau\left\{\sin \left(\omega_{0} t+\left(\omega-\omega_{0}\right) \tau\right)-\sin \left(-\omega_{0} t+\left(\omega+\omega_{0}\right) \tau\right)\right\} \tag{7}
\end{equation*}
$$

Then the integral is

$$
\begin{align*}
\langle x(t)\rangle= & \frac{F_{0}}{2 m \omega_{0}}\left\{\frac{1}{\omega-\omega_{0}}\left[\cos (\omega t)-\cos \left(\omega_{0} t\right)\right]\right. \\
& \left.-\frac{1}{\omega+\omega_{0}}\left[\cos (\omega t)-\cos \left(\omega_{0} t\right)\right]\right\} \tag{8}
\end{align*}
$$

That is

$$
\begin{equation*}
\langle x(t)\rangle=\frac{F_{0}}{m\left(\omega^{2}-\omega_{0}^{2}\right)}\left[\cos (\omega t)-\cos \left(\omega_{0} t\right)\right] \tag{9}
\end{equation*}
$$

Is this procedure OK for $\omega \approx \omega_{0}$? Generally, it is not. However in this case it gives the exact answer. See below.

Is this right? Let's check the equation of motion:

$$
\begin{align*}
m \frac{d^{2}}{d t^{2}}\langle x(t)\rangle= & -\frac{F_{0}}{\left(\omega^{2}-\omega_{0}^{2}\right)}\left[\omega^{2} \cos (\omega t)-\omega_{0}^{2} \cos \left(\omega_{0} t\right)\right] \\
= & -\frac{F_{0}}{\left(\omega^{2}-\omega_{0}^{2}\right)}\left[\left(\omega^{2}-\omega_{0}^{2}\right) \cos (\omega t)\right. \tag{10}\\
& \left.-\omega_{0}^{2} \cos \left(\omega_{0} t\right)+\omega_{0}^{2} \cos (\omega t)\right] \\
= & -m \omega_{0}^{2}\langle x(t)\rangle-F_{0} \cos (\omega t) .
\end{align*}
$$

This is the classical equation of motion with the applied force $-d V / d x$. The Heisenberg picture operator $x_{H}(t)$ should obey the classical equation of motion exactly. Thus $\langle 0| x_{H}(t)|0\rangle$ should obey the classical equation of motion exactly. Since the classical result is linear in F_{0}, first order perturbation theory should give the exact result. It does.

[^0]: ${ }^{1}$ Copyright, 2012, D. E. Soper
 ${ }^{2}$ soper@uoregon.edu

