Problem solutions, 9 May 2012¹ D. E. Soper² University of Oregon 16 May 2012

Here is a solution for problem 5.38, which seemed to cause the most difficulty. Please check the algebra: there could be errors.

Problem 5.38 With a potential $V_0 \cos(kz - \omega t)$, we write

$$V_0 \cos(kz - \omega t) = \frac{V_0}{2} e^{ikz} e^{-i\omega t} + \frac{V_0}{2} e^{-ikz} e^{+i\omega t} \quad . \tag{1}$$

The first term leads to transititions to states $\langle f |$ with $\omega_f = \omega_1 + \omega$, where ω_1 is the energy of the ground state atom that we start with. The second term leads to transititions to states $\langle f |$ with $\omega_f = \omega_1 - \omega$. Since the final state of interest has $\omega_f > \omega_1$, this term does not contribute.

The transition rate is (using eq. (58) from our notes)

$$dR = (2\pi)\delta(\omega_{\rm f} - \omega_1 - \omega) \, d\vec{p}_{\rm f} \, \frac{V_0^2}{4} \, |\langle \vec{p}_{\rm f} | e^{ikz} | 1 \rangle|^2 \tag{2}$$

We can write this using $\omega_{\rm f} = p_{\rm f}^2/(2m)$ and

$$d\vec{p}_{\rm f} = mp_{\rm f} \, d\omega_{\rm f} \, d\Omega_{\rm f} \quad . \tag{3}$$

This gives the transition rate per unit solid angle:

$$\frac{dR}{d\Omega_{\rm f}} = \frac{\pi m p_{\rm f} V_0^2}{2} |\langle \vec{p}_{\rm f} | e^{ikz} | 1 \rangle|^2 \tag{4}$$

Let's look at the matrix element $\langle \vec{p_f} | e^{ikz} | 1 \rangle$. The final state wave function should really be an exact eigenstate for an electron in a Coulomb potential, but we approximate this as a plane wave. Then we have factors $\exp(-i\vec{p_f} \cdot \vec{r})$ and $\exp(i\vec{k} \cdot \vec{r})$, where \vec{k} points along the z-axis. The product of these is $\exp(-i\vec{q} \cdot \vec{r})$ where $\vec{q} = \vec{p_f} - \vec{k}$.

$$\langle \vec{p}_{\rm f} | e^{ikz} | 1 \rangle = \frac{1}{(2\pi)^{3/2}} \int_0^\infty r^2 dr \,\psi_0(r) \int_{-1}^1 d\cos\theta \, e^{-iqr\cos\theta} \int_0^{2\pi} d\phi$$
 (5)

¹Copyright, 2012, D. E. Soper

²soper@uoregon.edu

Here we have chosen the coordinate system for the position \vec{r} of the electron so that the z-axis is along \vec{q} . We have denoted the radial part of the wave function by $\psi_0(r)$:

$$\psi_0(r) = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0} \quad . \tag{6}$$

Now we can perform the ϕ and θ integrals:

$$\langle \vec{p}_{\rm f} | e^{ikz} | 1 \rangle = \frac{i}{(2\pi)^{1/2}q} \int_0^\infty r dr \, \psi_0(r) \left[e^{-iqr} - e^{iqr} \right]$$
 (7)

We can perform the r integral using

$$\int_0^\infty r dr e^{-\alpha r} = \frac{1}{\alpha^2} \quad . \tag{8}$$

Thus

$$\left\langle \vec{p}_{\rm f} \left| e^{ikz} \right| 1 \right\rangle = \frac{i}{(2\pi)^{1/2}q} \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0} \right)^{3/2} \left[\frac{1}{[(Z/a_0) - iq]^2} - \frac{1}{[(Z/a_0) + iq]^2} \right] \quad . \tag{9}$$

That is

$$\langle \vec{p}_{\rm f} | e^{ikz} | 1 \rangle = \frac{i}{(2\pi)^{1/2}q} \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0} \right)^{3/2} \frac{4iZq/a_0}{[(Z^2/a_0^2) + q^2]^2}$$
 (10)

This simplifies to

$$\langle \vec{p}_{\rm f} | e^{ikz} | 1 \rangle = -\frac{2^{3/2}}{\pi} \left(\frac{Z}{a_0} \right)^{5/2} \frac{1}{[(Z^2/a_0^2) + q^2]^2}$$
 (11)

The dependence on angle is contained in

$$q^{2} = p_{\rm f}^{2} + k^{2} - 2p_{\rm f}k\cos\theta \quad , \tag{12}$$

where θ is the angle between $\vec{p}_{\rm f}$ and the original z-axis.

With an incoming electromagnetic wave, there is an operator \vec{p} , which becomes $\vec{p}_{\rm f}$ and there is a polarization vector $\vec{\epsilon}$. The amplitude is proportional to $\vec{p}_{\rm f} \cdot \vec{\epsilon}$, so there is a strong angular dependence favoring emission in the direction of the polarization, $\pm \vec{\epsilon}$. In the present problem, the angular dependence is weak if k is small compared to $p_{\rm f}$.