Problem solutions, 9 May 2012^{1}

D. E. Soper ${ }^{2}$

University of Oregon
16 May 2012

Here is a solution for problem 5.38, which seemed to cause the most difficulty. Please check the algebra: there could be errors.
Problem 5.38 With a potential $V_{0} \cos (k z-\omega t)$, we write

$$
\begin{equation*}
V_{0} \cos (k z-\omega t)=\frac{V_{0}}{2} e^{i k z} e^{-i \omega t}+\frac{V_{0}}{2} e^{-i k z} e^{+i \omega t} \tag{1}
\end{equation*}
$$

The first term leads to transititions to states $\langle f|$ with $\omega_{f}=\omega_{1}+\omega$, where ω_{1} is the energy of the ground state atom that we start with. The second term leads to transititions to states $\langle f|$ with $\omega_{f}=\omega_{1}-\omega$. Since the final state of interest has $\omega_{\mathrm{f}}>\omega_{1}$, this term does not contribute.

The transition rate is (using eq. (58) from our notes)

$$
\begin{equation*}
\left.d R=(2 \pi) \delta\left(\omega_{\mathrm{f}}-\omega_{1}-\omega\right) d \vec{p}_{\mathrm{f}} \frac{V_{0}^{2}}{4}\left|\left\langle\vec{p}_{\mathrm{f}}\right| e^{i k z}\right| 1\right\rangle\left.\right|^{2} \tag{2}
\end{equation*}
$$

We can write this using $\omega_{\mathrm{f}}=p_{\mathrm{f}}^{2} /(2 m)$ and

$$
\begin{equation*}
d \vec{p}_{f}=m p_{\mathrm{f}} d \omega_{\mathrm{f}} d \Omega_{\mathrm{f}} \tag{3}
\end{equation*}
$$

This gives the transition rate per unit solid angle:

$$
\begin{equation*}
\left.\frac{d R}{d \Omega_{\mathrm{f}}}=\frac{\pi m p_{\mathrm{f}} V_{0}^{2}}{2}\left|\left\langle\vec{p}_{\mathrm{f}}\right| e^{i k z}\right| 1\right\rangle\left.\right|^{2} \tag{4}
\end{equation*}
$$

Let's look at the matrix element $\left\langle\vec{p}_{\mathrm{f}}\right| e^{i k z}|1\rangle$. The final state wave function should really be an exact eigenstate for an electron in a Coulomb potential, but we approximate this as a plane wave. Then we have factors $\exp \left(-i \vec{p}_{\mathrm{f}} \cdot \vec{r}\right)$ and $\exp (i \vec{k} \cdot \vec{r})$, where \vec{k} points along the z-axis. The product of these is $\exp (-i \vec{q} \cdot \vec{r})$ where $\vec{q}=\vec{p}_{\mathrm{f}}-\vec{k}$.

$$
\begin{equation*}
\left\langle\vec{p}_{\mathrm{f}}\right| e^{i k z}|1\rangle=\frac{1}{(2 \pi)^{3 / 2}} \int_{0}^{\infty} r^{2} d r \psi_{0}(r) \int_{-1}^{1} d \cos \theta e^{-i q r \cos \theta} \int_{0}^{2 \pi} d \phi \tag{5}
\end{equation*}
$$

[^0]Here we have chosen the coordinate system for the position \vec{r} of the electron so that the z-axis is along \vec{q}. We have denoted the radial part of the wave function by $\psi_{0}(r)$:

$$
\begin{equation*}
\psi_{0}(r)=\frac{1}{\sqrt{\pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-Z r / a_{0}} \tag{6}
\end{equation*}
$$

Now we can perform the ϕ and θ integrals:

$$
\begin{equation*}
\left\langle\vec{p}_{\mathrm{f}}\right| e^{i k z}|1\rangle=\frac{i}{(2 \pi)^{1 / 2} q} \int_{0}^{\infty} r d r \psi_{0}(r)\left[e^{-i q r}-e^{i q r}\right] . \tag{7}
\end{equation*}
$$

We can perform the r integral using

$$
\begin{equation*}
\int_{0}^{\infty} r d r e^{-\alpha r}=\frac{1}{\alpha^{2}} \tag{8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left\langle\vec{p}_{\mathrm{f}}\right| e^{i k z}|1\rangle=\frac{i}{(2 \pi)^{1 / 2} q} \frac{1}{\sqrt{\pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2}\left[\frac{1}{\left[\left(Z / a_{0}\right)-i q\right]^{2}}-\frac{1}{\left[\left(Z / a_{0}\right)+i q\right]^{2}}\right] . \tag{9}
\end{equation*}
$$

That is

$$
\begin{equation*}
\left\langle\vec{p}_{\mathrm{f}}\right| e^{i k z}|1\rangle=\frac{i}{(2 \pi)^{1 / 2} q} \frac{1}{\sqrt{\pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} \frac{4 i Z q / a_{0}}{\left[\left(Z^{2} / a_{0}^{2}\right)+q^{2}\right]^{2}} . \tag{10}
\end{equation*}
$$

This simplifies to

$$
\begin{equation*}
\left\langle\vec{p}_{\mathrm{f}}\right| e^{i k z}|1\rangle=-\frac{2^{3 / 2}}{\pi}\left(\frac{Z}{a_{0}}\right)^{5 / 2} \frac{1}{\left[\left(Z^{2} / a_{0}^{2}\right)+q^{2}\right]^{2}} . \tag{11}
\end{equation*}
$$

The dependence on angle is contained in

$$
\begin{equation*}
q^{2}=p_{\mathrm{f}}^{2}+k^{2}-2 p_{\mathrm{f}} k \cos \theta \tag{12}
\end{equation*}
$$

where θ is the angle between \vec{p}_{f} and the original z-axis.
With an incoming electromagnetic wave, there is an operator \vec{p}, which becomes $\overrightarrow{p_{\mathrm{f}}}$ and there is a polarization vector $\vec{\epsilon}$. The amplitude is proportional to $\overrightarrow{p_{f}} \cdot \vec{\epsilon}$, so there is a strong angular dependence favoring emission in the direction of the polarization, $\pm \vec{\epsilon}$. In the present problem, the angular dependence is weak if k is small compared to p_{f}.

[^0]: ${ }^{1}$ Copyright, 2012, D. E. Soper
 ${ }^{2}$ soper@uoregon.edu

