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I offer here some background for Chapter 5 of J. J. Sakurai, Modern
Quantum Mechanics.

1 The problem

We consider a system with a hamiltonian H(¢) that changes slowly in time.
We suppose that the eigenvalues of H at any time t are discrete and are
not degenerate. Thus any time ¢, the hamiltonian has a complete set of
eigenstates with

H(t)|n;t) = En(t)|nst) . (1)

The phase of n;t> is not determined by the eigenvalue equation, but you
should think of the phase as varying only slowly with ¢.

Now suppose that at time ¢ = 0 the system starts in a state ‘a; 0> and
evolves according to the time-dependent Schrodinger equation:

d
za‘a;@ = H(t)|a;t) . (2)

I claim that if |a; 0> is one of the eigenstates of H(0), then ‘a; t> will be a
phase factor times the corresponding eigenstate of H(t) as long as H(t) is
slowly varying. Here “slowly varying” means that the time scale 7 charac-
teristic of changes in H is large compared to the inverse of energy differences
E,(t) — E,(t).

2 The differential equation

Let us expand |a; t> in the energy eigenstates:

’a; t) = ch(t)ew"(t)|n; ), (3)
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where
0n(t) = —/ dt'" E,(t") . (4)

We are interested in how the expansion coefficients ¢, (t) evolve. We expect
them to evolve slowly because we have put the main time dependence in the
dynamical phase factor exp(if,(t)).

Applying the Schrodinger equation, we have

> Eu(t)en()e™Dnsty = {ica (t)e D |n; t)

. d
+ En(t)cn(t)ew"(t)|n; t> + cu(t)e Wn(t) j—

)}

dt
(5)
That is
= 2 {0 i) + ealt)e™ Zhin} . (6)
Taking the inner product with <m; t‘ gives
: i i, d
0 = ép(t)e +§njcn<t>e9 O (mit|= (7)
Thus
Cm(t) = — et <m t| ‘m t> ch ’(9 t|n;t>.

n#m

The factor multiplying —c,,(¢) in the first term in Eq. (8) is purely imag-
inary. To see that, note that

0= i<m,t|m;t>

= Gt lmst) + (5 (ot ) ©



This factor is of some importance, so we give it a name:

<m,t|%‘m;t> = —i5(t) , (10)

where

Yon (1) :i/odt' (m;t %|m;t> : (11)

The second term in Eq. (8) can be rewritten by differentiating the energy
eigenvalue equation,

0= [H(t) — Et)

nit) + [H(t) — En(z)]%m £) . (12)

Taking the inner product with <m; t

for m # n gives

d

0= (m;t H(t)}n;t> + (m;t|[H(t) — En(t)]% nit) (13)
0= (mst|H(t)|n; t) + (m; t|[En(t) — En(t)]%m; ), (14)
Thus < . ( )| >
d m;t|H(t)|n;t
<m;t|a nt) = Fot) = Bo() (15)
Using this result, we have
(1) = i (£)1(1) = 3 ca(t)e OO0 (0) <gl’(§|)H_<%f(’f)> (16)

n#m

This is the exact evolution equation for c¢,,(t). When H(t) is slowly
varying, we can drop the second term. Why? We are supposing that H(t)
varies on a time scale 7 that is long compared to 1/(E, — E,,). The second
term is evidently proportional to 1/7, so it is small. But we want to use the
evolution equation to find ¢,,(t) after a time T" over which H has changed
substantially. That is, we want to find ¢,,(t) after a time T" ~ 7. Since
7/7 = 1, it is not immediately evident that the second term can be neglected.
However

en(T) = /0 dt e (t) + cm(0) . (17)
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When we integrate the second term over t, the phase factor exp(i(6,(t) —
0m(t))) oscillates inside the integral, so that the contribution from the second
term is very small. The first term has no phase factor, so it has the potential
to contribute to a finite change in ¢,,(¢).

Thus we have approximately

Cm(t) = icm (£)ym(t) . (18)

The solution of this is ‘
em(t) = e We, (0) . (19)

The result (19) shows that if the system starts in a particular eigenstate
N, so that cy(0) = 1 and ¢,,(0) = 0 for m # N, then as the hamiltonian
slowly canges the system remains in the eigenstate ’N ; t> that evolves from
the starting eigenstate. The coefficient ¢y (t) can, however, acquire a phase.

3 Berry’s phase

Let’s consider the phase v,,(t) in more detail. Suppose that the hamiltonian
depends on several parameters R;, Rs,... and that these parameters are
changed over time, resulting in the slow change in the hamiltonian over time.
Then the energy eigenstates also depend on R and their time dependence is
the result of their R dependence:

% n; R(t)) = Vg|n; R(t)) - %}J@ : (20)
Thus the phase v, is
Ym(T) = z/o dt %t(t) - (m; R(t)|Vr|m; R(t)) . (21)

This can be rewritten as an integral over the path C' that the parameters
follow:

Yo (T) = Z'/CdR .<m;R|VR‘m; R> . (22)

Now note that the phase ~,,(7") seems as though it should be pretty
arbitrary. Suppose that I redefine the phase of ‘m; R> so that

|m; R) — e_i’\(R)‘m; R) . (23)
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Here the extra phase A(R) can be anything that I like. Then

Ve|lm; Ry — e *B®Vg|m; R) — i (VRA(R)) e "B |m; R)  (24)

e (m; R|Vg|m; R) — (m; R|Vg|m; R) — iVRA(R) . (25)
Then the phase changes by
1) > 30 (D) + [ AR - VaA(R) (26)
C
That is,
V(L) = 4m(T) + AMR(T)) — A(R(0)) . (27)

We see that if we simply change the parameters from one setting to an-
other, then the phase v,,(T") can be anything. However, if if we change the
parameters from R(0) and go along a path in the parameter space, finally
coming back to the parameters we started with, then A\(R(T")) — A(R(0)) =0
and the phase is not arbitrary. The phase 7,,(T") then depends on the geom-
etry of the path in parameter space. It is called Barry’s phase.



