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I offer here some background for Chapter 5 of J. J. Sakurai, Modern
Quantum Mechanics.

1 The problem

We consider a system with a hamiltonian H(t) that changes slowly in time.
We suppose that the eigenvalues of H at any time t are discrete and are
not degenerate. Thus any time t, the hamiltonian has a complete set of
eigenstates with

H(t)
∣∣n; t

〉
= En(t)

∣∣n; t
〉
. (1)

The phase of
∣∣n; t

〉
is not determined by the eigenvalue equation, but you

should think of the phase as varying only slowly with t.
Now suppose that at time t = 0 the system starts in a state

∣∣α; 0
〉

and
evolves according to the time-dependent Schrödinger equation:

i
d

dt

∣∣α; t
〉

= H(t)
∣∣α; t

〉
. (2)

I claim that if
∣∣α; 0

〉
is one of the eigenstates of H(0), then

∣∣α; t
〉

will be a
phase factor times the corresponding eigenstate of H(t) as long as H(t) is
slowly varying. Here “slowly varying” means that the time scale τ charac-
teristic of changes in H is large compared to the inverse of energy differences
En(t)− Em(t).

2 The differential equation

Let us expand
∣∣α; t

〉
in the energy eigenstates:∣∣α; t

〉
=
∑
n

cn(t)eiθn(t)
∣∣n; t

〉
, (3)
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where

θn(t) = −
∫ t

0

dt′ En(t′) . (4)

We are interested in how the expansion coefficients cn(t) evolve. We expect
them to evolve slowly because we have put the main time dependence in the
dynamical phase factor exp(iθn(t)).

Applying the Schrödinger equation, we have∑
n

En(t)cn(t)eiθn(t)
∣∣n; t

〉
=
∑
n

{
iċn(t)eiθn(t)

∣∣n; t
〉

+ En(t)cn(t)eiθn(t)
∣∣n; t

〉
+ cn(t)eiθn(t) i

d

dt

∣∣n; t
〉}

.

(5)

That is

0 =
∑
n

{
ċn(t)eiθn(t)

∣∣n; t
〉

+ cn(t)eiθn(t)
d

dt

∣∣n; t
〉}

. (6)

Taking the inner product with
〈
m; t

∣∣ gives

0 = ċm(t)eiθm(t) +
∑
n

cn(t)eiθn(t)
〈
m; t

∣∣ d
dt

∣∣n; t
〉
. (7)

Thus

ċm(t) = − cm(t)
〈
m; t

∣∣ d
dt

∣∣m; t
〉
−
∑
n6=m

cn(t)ei(θn(t)−θm(t))
〈
m; t

∣∣ d
dt

∣∣n; t
〉
. (8)

The factor multiplying −cm(t) in the first term in Eq. (8) is purely imag-
inary. To see that, note that

0 =
d

dt

〈
m, t

∣∣m; t
〉

=
〈
m, t

∣∣ d
dt

∣∣m; t
〉

+

(
d

dt

〈
m, t

∣∣) ∣∣m; t
〉

=
〈
m, t

∣∣ d
dt

∣∣m; t
〉

+

(〈
m, t

∣∣ d
dt

∣∣m; t
〉)∗

.

(9)
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This factor is of some importance, so we give it a name:〈
m, t

∣∣ d
dt

∣∣m; t
〉

= −i γ̇(t) , (10)

where

γm(t) = i

∫ t

0

dt′
〈
m; t

∣∣ d
dt

∣∣m; t
〉
. (11)

The second term in Eq. (8) can be rewritten by differentiating the energy
eigenvalue equation,

0 = [Ḣ(t)− Ėn(t)
∣∣n; t

〉
+ [H(t)− En(t)]

d

dt

∣∣n; t
〉
. (12)

Taking the inner product with
〈
m; t

∣∣ for m 6= n gives

0 =
〈
m; t

∣∣Ḣ(t)
∣∣n; t

〉
+
〈
m; t

∣∣[H(t)− En(t)]
d

dt

∣∣n; t
〉
, (13)

or

0 =
〈
m; t

∣∣Ḣ(t)
∣∣n; t

〉
+
〈
m; t

∣∣[Em(t)− En(t)]
d

dt

∣∣n; t
〉
, (14)

Thus 〈
m; t

∣∣ d
dt

∣∣n; t
〉

=

〈
m; t

∣∣Ḣ(t)
∣∣n; t

〉
En(t)− Em(t)

. (15)

Using this result, we have

ċm(t) = icm(t)γ̇(t)−
∑
n6=m

cn(t)ei(θn(t)−θm(t))

〈
m; t

∣∣Ḣ(t)
∣∣n; t

〉
En(t)− Em(t)

. (16)

This is the exact evolution equation for cm(t). When H(t) is slowly
varying, we can drop the second term. Why? We are supposing that H(t)
varies on a time scale τ that is long compared to 1/(En − Em). The second
term is evidently proportional to 1/τ , so it is small. But we want to use the
evolution equation to find cm(t) after a time T over which H has changed
substantially. That is, we want to find cm(t) after a time T ∼ τ . Since
τ/τ = 1, it is not immediately evident that the second term can be neglected.
However

cm(T ) =

∫ T

0

dt cm(t) + cm(0) . (17)
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When we integrate the second term over t, the phase factor exp(i(θn(t) −
θm(t))) oscillates inside the integral, so that the contribution from the second
term is very small. The first term has no phase factor, so it has the potential
to contribute to a finite change in cm(t).

Thus we have approximately

ċm(t) = icm(t)γ̇m(t) . (18)

The solution of this is
cm(t) = eiγm(t)cm(0) . (19)

The result (19) shows that if the system starts in a particular eigenstate
N , so that cN(0) = 1 and cm(0) = 0 for m 6= N , then as the hamiltonian
slowly canges the system remains in the eigenstate

∣∣N ; t
〉

that evolves from
the starting eigenstate. The coefficient cN(t) can, however, acquire a phase.

3 Berry’s phase

Let’s consider the phase γm(t) in more detail. Suppose that the hamiltonian
depends on several parameters R1, R2, . . . and that these parameters are
changed over time, resulting in the slow change in the hamiltonian over time.
Then the energy eigenstates also depend on R and their time dependence is
the result of their R dependence:

d

dt

∣∣n;R(t)
〉

= ∇R

∣∣n;R(t)
〉
· dR(t)

dt
. (20)

Thus the phase γm is

γm(T ) = i

∫ t

0

dt
dR(t)

dt
·
〈
m;R(t)

∣∣∇R

∣∣m;R(t)
〉
. (21)

This can be rewritten as an integral over the path C that the parameters
follow:

γm(T ) = i

∫
C

dR ·
〈
m;R

∣∣∇R

∣∣m;R
〉
. (22)

Now note that the phase γm(T ) seems as though it should be pretty
arbitrary. Suppose that I redefine the phase of

∣∣m;R
〉

so that∣∣m;R
〉
→ e−iλ(R)

∣∣m;R
〉
. (23)
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Here the extra phase λ(R) can be anything that I like. Then

∇R

∣∣m;R
〉
→ e−iλ(R)∇R

∣∣m;R
〉
− i (∇Rλ(R)) e−iλ(R)

∣∣m;R
〉

(24)

and 〈
m;R

∣∣∇R

∣∣m;R
〉
→
〈
m;R

∣∣∇R

∣∣m;R
〉
− i∇Rλ(R) . (25)

Then the phase changes by

γm(T )→ γm(T ) +

∫
C

dR ·∇Rλ(R) . (26)

That is,
γm(T )→ γm(T ) + λ(R(T ))− λ(R(0)) . (27)

We see that if we simply change the parameters from one setting to an-
other, then the phase γm(T ) can be anything. However, if if we change the
parameters from R(0) and go along a path in the parameter space, finally
coming back to the parameters we started with, then λ(R(T ))−λ(R(0)) = 0
and the phase is not arbitrary. The phase γm(T ) then depends on the geom-
etry of the path in parameter space. It is called Barry’s phase.
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