The adiabatic approximation and Berry's phase ${ }^{1}$

D. E. Soper ${ }^{2}$

University of Oregon
27 April 2012

I offer here some background for Chapter 5 of J. J. Sakurai, Modern Quantum Mechanics.

1 The problem

We consider a system with a hamiltonian $H(t)$ that changes slowly in time. We suppose that the eigenvalues of H at any time t are discrete and are not degenerate. Thus any time t, the hamiltonian has a complete set of eigenstates with

$$
\begin{equation*}
H(t)|n ; t\rangle=E_{n}(t)|n ; t\rangle \tag{1}
\end{equation*}
$$

The phase of $|n ; t\rangle$ is not determined by the eigenvalue equation, but you should think of the phase as varying only slowly with t.

Now suppose that at time $t=0$ the system starts in a state $|\alpha ; 0\rangle$ and evolves according to the time-dependent Schrödinger equation:

$$
\begin{equation*}
i \frac{d}{d t}|\alpha ; t\rangle=H(t)|\alpha ; t\rangle \tag{2}
\end{equation*}
$$

I claim that if $|\alpha ; 0\rangle$ is one of the eigenstates of $H(0)$, then $|\alpha ; t\rangle$ will be a phase factor times the corresponding eigenstate of $H(t)$ as long as $H(t)$ is slowly varying. Here "slowly varying" means that the time scale τ characteristic of changes in H is large compared to the inverse of energy differences $E_{n}(t)-E_{m}(t)$.

2 The differential equation

Let us expand $|\alpha ; t\rangle$ in the energy eigenstates:

$$
\begin{equation*}
|\alpha ; t\rangle=\sum_{n} c_{n}(t) e^{i \theta_{n}(t)}|n ; t\rangle, \tag{3}
\end{equation*}
$$

[^0]where
\[

$$
\begin{equation*}
\theta_{n}(t)=-\int_{0}^{t} d t^{\prime} E_{n}\left(t^{\prime}\right) \tag{4}
\end{equation*}
$$

\]

We are interested in how the expansion coefficients $c_{n}(t)$ evolve. We expect them to evolve slowly because we have put the main time dependence in the dynamical phase factor $\exp \left(i \theta_{n}(t)\right)$.

Applying the Schrödinger equation, we have

$$
\begin{align*}
\sum_{n} E_{n}(t) c_{n}(t) e^{i \theta_{n}(t)}|n ; t\rangle= & \sum_{n}\left\{i \dot{c}_{n}(t) e^{i \theta_{n}(t)}|n ; t\rangle\right. \\
& \left.+E_{n}(t) c_{n}(t) e^{i \theta_{n}(t)}|n ; t\rangle+c_{n}(t) e^{i \theta_{n}(t)} i \frac{d}{d t}|n ; t\rangle\right\} \tag{5}
\end{align*}
$$

That is

$$
\begin{equation*}
0=\sum_{n}\left\{\dot{c}_{n}(t) e^{i \theta_{n}(t)}|n ; t\rangle+c_{n}(t) e^{i \theta_{n}(t)} \frac{d}{d t}|n ; t\rangle\right\} \tag{6}
\end{equation*}
$$

Taking the inner product with $\langle m ; t|$ gives

$$
\begin{equation*}
0=\dot{c}_{m}(t) e^{i \theta_{m}(t)}+\sum_{n} c_{n}(t) e^{i \theta_{n}(t)}\langle m ; t| \frac{d}{d t}|n ; t\rangle \tag{7}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\dot{c}_{m}(t)=-c_{m}(t)\langle m ; t| \frac{d}{d t}|m ; t\rangle-\sum_{n \neq m} c_{n}(t) e^{i\left(\theta_{n}(t)-\theta_{m}(t)\right)}\langle m ; t| \frac{d}{d t}|n ; t\rangle \tag{8}
\end{equation*}
$$

The factor multiplying $-c_{m}(t)$ in the first term in Eq. (8) is purely imaginary. To see that, note that

$$
\begin{align*}
0 & =\frac{d}{d t}\langle m, t \mid m ; t\rangle \\
& =\langle m, t| \frac{d}{d t}|m ; t\rangle+\left(\frac{d}{d t}\langle m, t|\right)|m ; t\rangle \tag{9}\\
& =\langle m, t| \frac{d}{d t}|m ; t\rangle+\left(\langle m, t| \frac{d}{d t}|m ; t\rangle\right)^{*} .
\end{align*}
$$

This factor is of some importance, so we give it a name:

$$
\begin{equation*}
\langle m, t| \frac{d}{d t}|m ; t\rangle=-i \dot{\gamma}(t) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{m}(t)=i \int_{0}^{t} d t^{\prime}\langle m ; t| \frac{d}{d t}|m ; t\rangle \tag{11}
\end{equation*}
$$

The second term in Eq. (8) can be rewritten by differentiating the energy eigenvalue equation,

$$
\begin{equation*}
0=\left[\dot{H}(t)-\dot{E}_{n}(t)|n ; t\rangle+\left[H(t)-E_{n}(t)\right] \frac{d}{d t}|n ; t\rangle\right. \tag{12}
\end{equation*}
$$

Taking the inner product with $\langle m ; t|$ for $m \neq n$ gives

$$
\begin{equation*}
0=\langle m ; t| \dot{H}(t)|n ; t\rangle+\langle m ; t|\left[H(t)-E_{n}(t)\right] \frac{d}{d t}|n ; t\rangle \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
0=\langle m ; t| \dot{H}(t)|n ; t\rangle+\langle m ; t|\left[E_{m}(t)-E_{n}(t)\right] \frac{d}{d t}|n ; t\rangle, \tag{14}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\langle m ; t| \frac{d}{d t}|n ; t\rangle=\frac{\langle m ; t| \dot{H}(t)|n ; t\rangle}{E_{n}(t)-E_{m}(t)} . \tag{15}
\end{equation*}
$$

Using this result, we have

$$
\begin{equation*}
\dot{c}_{m}(t)=i c_{m}(t) \dot{\gamma}(t)-\sum_{n \neq m} c_{n}(t) e^{i\left(\theta_{n}(t)-\theta_{m}(t)\right)} \frac{\langle m ; t| \dot{H}(t)|n ; t\rangle}{E_{n}(t)-E_{m}(t)} . \tag{16}
\end{equation*}
$$

This is the exact evolution equation for $c_{m}(t)$. When $H(t)$ is slowly varying, we can drop the second term. Why? We are supposing that $H(t)$ varies on a time scale τ that is long compared to $1 /\left(E_{n}-E_{m}\right)$. The second term is evidently proportional to $1 / \tau$, so it is small. But we want to use the evolution equation to find $c_{m}(t)$ after a time T over which H has changed substantially. That is, we want to find $c_{m}(t)$ after a time $T \sim \tau$. Since $\tau / \tau=1$, it is not immediately evident that the second term can be neglected. However

$$
\begin{equation*}
c_{m}(T)=\int_{0}^{T} d t c_{m}(t)+c_{m}(0) \tag{17}
\end{equation*}
$$

When we integrate the second term over t, the phase factor $\exp \left(i\left(\theta_{n}(t)-\right.\right.$ $\left.\theta_{m}(t)\right)$) oscillates inside the integral, so that the contribution from the second term is very small. The first term has no phase factor, so it has the potential to contribute to a finite change in $c_{m}(t)$.

Thus we have approximately

$$
\begin{equation*}
\dot{c}_{m}(t)=i c_{m}(t) \dot{\gamma}_{m}(t) \tag{18}
\end{equation*}
$$

The solution of this is

$$
\begin{equation*}
c_{m}(t)=e^{i \gamma_{m}(t)} c_{m}(0) . \tag{19}
\end{equation*}
$$

The result (19) shows that if the system starts in a particular eigenstate N, so that $c_{N}(0)=1$ and $c_{m}(0)=0$ for $m \neq N$, then as the hamiltonian slowly canges the system remains in the eigenstate $|N ; t\rangle$ that evolves from the starting eigenstate. The coefficient $c_{N}(t)$ can, however, acquire a phase.

3 Berry's phase

Let's consider the phase $\gamma_{m}(t)$ in more detail. Suppose that the hamiltonian depends on several parameters R_{1}, R_{2}, \ldots and that these parameters are changed over time, resulting in the slow change in the hamiltonian over time. Then the energy eigenstates also depend on \boldsymbol{R} and their time dependence is the result of their \boldsymbol{R} dependence:

$$
\begin{equation*}
\frac{d}{d t}|n ; \boldsymbol{R}(t)\rangle=\boldsymbol{\nabla}_{R}|n ; \boldsymbol{R}(t)\rangle \cdot \frac{d \boldsymbol{R}(t)}{d t} . \tag{20}
\end{equation*}
$$

Thus the phase γ_{m} is

$$
\begin{equation*}
\gamma_{m}(T)=i \int_{0}^{t} d t \frac{d \boldsymbol{R}(t)}{d t} \cdot\langle m ; \boldsymbol{R}(t)| \boldsymbol{\nabla}_{R}|m ; \boldsymbol{R}(t)\rangle . \tag{21}
\end{equation*}
$$

This can be rewritten as an integral over the path C that the parameters follow:

$$
\begin{equation*}
\gamma_{m}(T)=i \int_{C} d \boldsymbol{R} \cdot\langle m ; \boldsymbol{R}| \boldsymbol{\nabla}_{R}|m ; \boldsymbol{R}\rangle . \tag{22}
\end{equation*}
$$

Now note that the phase $\gamma_{m}(T)$ seems as though it should be pretty arbitrary. Suppose that I redefine the phase of $|m ; \boldsymbol{R}\rangle$ so that

$$
\begin{equation*}
|m ; \boldsymbol{R}\rangle \rightarrow e^{-i \lambda(\boldsymbol{R})}|m ; \boldsymbol{R}\rangle \tag{23}
\end{equation*}
$$

Here the extra phase $\lambda(\boldsymbol{R})$ can be anything that I like. Then

$$
\begin{equation*}
\boldsymbol{\nabla}_{R}|m ; \boldsymbol{R}\rangle \rightarrow e^{-i \lambda(\boldsymbol{R})} \boldsymbol{\nabla}_{R}|m ; \boldsymbol{R}\rangle-i\left(\boldsymbol{\nabla}_{R} \lambda(\boldsymbol{R})\right) e^{-i \lambda(\boldsymbol{R})}|m ; \boldsymbol{R}\rangle \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle m ; \boldsymbol{R}| \boldsymbol{\nabla}_{R}|m ; \boldsymbol{R}\rangle \rightarrow\langle m ; \boldsymbol{R}| \boldsymbol{\nabla}_{R}|m ; \boldsymbol{R}\rangle-i \boldsymbol{\nabla}_{R} \lambda(\boldsymbol{R}) . \tag{25}
\end{equation*}
$$

Then the phase changes by

$$
\begin{equation*}
\gamma_{m}(T) \rightarrow \gamma_{m}(T)+\int_{C} d \boldsymbol{R} \cdot \nabla_{R} \lambda(\boldsymbol{R}) \tag{26}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\gamma_{m}(T) \rightarrow \gamma_{m}(T)+\lambda(\boldsymbol{R}(T))-\lambda(\boldsymbol{R}(0)) \tag{27}
\end{equation*}
$$

We see that if we simply change the parameters from one setting to another, then the phase $\gamma_{m}(T)$ can be anything. However, if if we change the parameters from $R(0)$ and go along a path in the parameter space, finally coming back to the parameters we started with, then $\lambda(\boldsymbol{R}(T))-\lambda(\boldsymbol{R}(0))=0$ and the phase is not arbitrary. The phase $\gamma_{m}(T)$ then depends on the geometry of the path in parameter space. It is called Barry's phase.

[^0]: ${ }^{1}$ Copyright 2012, D. E. Soper
 ${ }^{2}$ soper@uoregon.edu

